Journal Mobile Options
Table of Contents
Vol. 172, No. 3, 2002
Issue release date: 2002
Section title: Paper
Cells Tissues Organs 2002;172:174–189
(DOI:10.1159/000066964)

Measuring Cell Adhesion Forces with the Atomic Force Microscope at the Molecular Level

Benoit M. · Gaub H.E.
Center for Nano Science, Ludwigs-Maximilians-Universität, Munich, Germany

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Paper

Received: 9/10/2002
Published online: 12/18/2002

Number of Print Pages: 16
Number of Figures: 12
Number of Tables: 2

ISSN: 1422-6405 (Print)
eISSN: 1422-6421 (Online)

For additional information: http://www.karger.com/CTO

Abstract

In the past 25 years many techniques have been developed to characterize cell adhesion and to quantify adhesion forces. Atomic force microscopy (AFM) has been used to measure forces in the pico-newton range, an experimental technique known as force spectroscopy. We modified such an AFM to measure adhesion forces between live cells or between cells and surfaces. This strategy required functionalizing the surface of the sensors for immobilizing the cell. We used Dictyostelium discoideum cells which respond to starvation by surface expression of the adhesion molecule csA and consequent aggregation to measure the adhesion force of a single csA-csA bond. Relevant experimental parameters include the duration of contact between the interacting surfaces, the force against which this contact is maintained, the number and specificity of interacting adhesion molecules and the constituents of the medium in which the interaction occurs. This technology also permits the measurement of the viscoelastic properties of single cells or cell layers.


Article / Publication Details

First-Page Preview
Abstract of Paper

Received: 9/10/2002
Published online: 12/18/2002

Number of Print Pages: 16
Number of Figures: 12
Number of Tables: 2

ISSN: 1422-6405 (Print)
eISSN: 1422-6421 (Online)

For additional information: http://www.karger.com/CTO


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.