Journal Mobile Options
Table of Contents
Vol. 176, No. 1-3, 2004
Issue release date: 2004
Cells Tissues Organs 2004;176:67–78
(DOI:10.1159/000075028)

Forming a Multinucleated Cell: Molecules That Regulate Myoblast Fusion

Horsley V. · Pavlath G.K.
Department of Pharmacology, Emory University, Atlanta, Ga., USA

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

In mammals, cell fusion occurs among a limited number of cell types: sperm and oocytes during fertilization, trophoblasts during placenta formation, macrophages during giant cell and osteoclast formation and myoblasts in the formation of myofibers and myotubes. The molecular mechanisms involved in these membrane fusion events largely are unknown. This review will focus on the known molecules that regulate myoblast fusion with an emphasis on a novel signaling pathway involving the calcium-regulated transcription factor NFATC2 in the regulation of myoblast fusion.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Abbott, K.L., B.B. Friday, D. Thaloor, T.J. Murphy, G. K. Pavlath (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 9: 2905–2916.
  2. Abe, E., H. Mocharla, T. Yamate, Y. Taguchi, S.C. Manolagas (1999) Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int 64: 508–515.
  3. Abmayr, S.M., L. Balagopalan, B.J. Galletta, S.J. Hong (2003) Cell and molecular biology of myoblast fusion. Int Rev Cytol 225: 33–89.
  4. Abmayr, S.M., C.A. Keller (1998) Drosophila myogenesis and insights into the role of nautilus. Curr Top Dev Biol 38: 35–80.
  5. Adamo, S., B. Zani, G. Siracusa, M. Molinaro (1976) Expression of differentiative traits in the absence of cell fusion during myogenesis in culture. Cell Differ 5: 53–67.
  6. Allen, D.L., J.K. Linderman, R.R. Roy, A.J. Bigbee, R.E. Grindeland, V. Mukku, V.R. Edgerton (1997) Apoptosis: A mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587.
  7. Allen, D.L., S.R. Monke, R.J. Talmadge, R.R. Roy, V.R. Edgerton (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78: 1969–1976.
  8. Allen, D.L., R.R. Roy, V.R. Edgerton (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22: 1350–1360.
  9. Artero, R.D., I. Castanon, M.K. Baylies (2001) The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128: 4251–4264.
  10. Asakura, M., M. Kitakaze, S. Takashima, Y. Liao, F. Ishikura, T. Yoshinaka, H. Ohmoto, K. Node, K. Yoshino, H. Ishiguro, H. Asanuma, S. Sanada, Y. Matsumura, H. Takeda, S. Beppu, M. Tada, M. Hori, S. Higashiyama (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nat Med 8: 35–40.
  11. Asboth, G., S. Phaneuf, G.N. Europe-Finner, M. Toth, A.L. Bernal (1996) Prostaglandin E2 activates phospholipase C and elevates intracellular calcium in cultured myometrial cells: Involvement of EP1 and EP3 receptor subtypes. Endocrinology 137: 2572–2579.
  12. Balcerzak, D., S. Poussard, J.J. Brustis, N. Elamrani, M. Soriano, P. Cottin, A. Ducastaing (1995) An antisense oligodeoxyribonucleotide to m-calpain mRNA inhibits myoblast fusion. J Cell Sci 108: 2077–2082.
  13. Barks, J.L., J.J. McQuillan, M.F. Iademarco (1997) TNF-alpha and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells. J Immunol 159: 4532–4538.
  14. Barnoy, S., T. Glaser, N.S. Kosower (1997) Calpain and calpastatin in myoblast differentiation and fusion: Effects of inhibitors. Biochim Biophys Acta 1358: 181–188.
  15. Barnoy, S., T. Glasner, N.S. Kosower (1996) The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem Biophys Res Commun 220: 933–938.
  16. Bar-Sagi, D., J. Prives (1983) Trifluoperazine, a calmodulin antagonist, inhibits muscle cell fusion. J Cell Biol 97: 1375–1380.
  17. Bate, M. (1990) The embryonic development of larval muscles in Drosophila. Development 110:791–804.
  18. Baylies, M.K., A.M. Michelson (2001) Invertebrate myogenesis: Looking back to the future of muscle development. Curr Opin Genet Dev 11:431–439.
  19. Bayliss, L.M., J.C. Sloper (1971) Pre-irradiation and the regeneration of injured skeletal muscle. J Pathol 104: v–vi.
  20. Bernheim, L., J.H. Liu, M. Hamann, C.A. Haenggeli, J. Fischer-Lougheed, C.R. Bader (1996) Contribution of a non-inactivating potassium current to the resting membrane potential of fusion-competent human myoblasts. J Physiol 493/1: 129–141.
  21. Bijlenga, P., J.H. Liu, E. Espinos, C.A. Haenggeli, J. Fischer-Lougheed, C.R. Bader, L. Bernheim (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci USA 97: 7627–7632.
  22. Bischoff, R. (1978) Myoblast fusion; in Nicolson, G. (ed): Membrane Fusion. New York, North-Holland Biomedical Press, pp. 127–179.
  23. Bois, P.R., G.C. Grosveld (2003) FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J 22: 1147–1157.
  24. Bour, B.A., M. Chakravarti, J.M. West, S.M. Abmayr (2000) Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev 14: 1498–1511.
  25. Breyer, R.M., C.K. Bagdassarian, S.A. Myers, M.D. Breyer (2001) Prostanoid receptors: Subtypes and signaling. Annu Rev Pharmacol Toxicol 41: 661–690.
  26. Burleigh, I.G. (1977) Observations on the number of nuclei within the fibres of some red and white muscles. J Cell Sci 23: 269–284.
  27. Cardasis, C.A., G.W. Cooper (1975) An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: A satellite cell-muscle fiber growth unit. J Exp Zool 191:347–358.
  28. Chen, E.H., E.N. Olson (2001) Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell 1: 705–715.
  29. Chen, W., T. Andom, P. Bhattacherjee, C. Paterson (1997) Intracellular calcium mobilization following prostaglandin receptor activation in human ciliary muscle cells. Curr Eye Res 16: 847–853.
  30. Constantin, B., C. Cognard, G. Raymond (1996) Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Cell Calcium 19: 365–374.
  31. Cooper, E. (2001) A new role for ion channels in myoblast fusion. J Cell Biol 153: F9–F12.

    External Resources

  32. Crabtree, G.R., E.N. Olson (2002) NFAT signaling: Choreographing the social lives of cells. Cell 10(suppl): S67–S79.
  33. Darr, K.C., E. Schultz (1989) Hindlimb suspension suppresses muscle growth and satellite cell proliferation. J Appl Physiol 67: 1827–1834.
  34. David, J.D., C.A. Higginbotham (1981) Fusion of chick embryo skeletal myoblasts: Interactions of prostaglandin E1, adenosine 3′:5′ monophosphate, and calcium influx. Dev Biol 82:308–316.
  35. David, J.D., W.M. See, C.A. Higginbotham (1981) Fusion of chick embryo skeletal myoblasts: Role of calcium influx preceding membrane union. Dev Biol 82: 297–307.
  36. Den, H., D.A. Malinzak, H.J. Keating, A. Rosenberg (1975) Influence of Concanavalin A, wheat germ agglutinin, and soybean agglutinin on the fusion of myoblasts in vitro. J Cell Biol 67: 826–834.
  37. Doberstein, S.K., R.D. Fetter, A.Y. Mehta, C.S. Goodman (1997) Genetic analysis of myoblast fusion: Blown fuse is required for progression beyond the prefusion complex. J Cell Biol 136:1249–1261.
  38. Doering, J.L., D.A. Fischman (1977) A fusion-promoting macromolecular factor in muscle conditioned medium. Exp Cell Res 105: 437–443.
  39. Dourdin, N., D. Balcerzak, J.J. Brustis, S. Poussard, P. Cottin, A. Ducastaing (1999) Potential m-calpain substrates during myoblast fusion. Exp Cell Res 246: 433–442.
  40. Dourdin, N., J.J. Brustis, D. Balcerzak, N. Elamrani, S. Poussard, P. Cottin, A. Ducastaing (1997) Myoblast fusion requires fibronectin degradation by exteriorized m-calpain. Exp Cell Res 235: 385–394.
  41. Dworak, H.A., H. Sink (2002) Myoblast fusion in Drosophila. Bioessays 24: 591–601.
  42. Emerson, C.P., Jr., S.K. Beckner (1975) Activation of myosin synthesis in fusing and mononucleated myoblasts. J Mol Biol 93: 431–447.
  43. Entwistle, A., D.H. Curtis, R.J. Zalin (1986) Myoblast fusion is regulated by a prostanoid of the one series independently of a rise in cyclic AMP. J Cell Biol 103: 857–866.
  44. Entwistle, A., R.J. Zalin, S. Bevan, A.E. Warner (1988) The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine. J Cell Biol 106: 1693–1702.
  45. Evans, J.P. (2001) Fertilin beta and other ADAMs as integrin ligands: Insights into cell adhesion and fertilization. Bioessays 23: 628–639.
  46. Farkas-Bargeton, E., J.P. Barbet, S. Dancea, R. Wehrle, A. Checouri, O. Dulac (1988) Immaturity of muscle fibers in the congenital form of myotonic dystrophy: Its consequences and its origin. J Neurol Sci 83: 145–159.
  47. Ferrari, G., F. Mavilio (2002) Myogenic stem cells from the bone marrow: A therapeutic alternative for muscular dystrophy? Neuromuscul Disord 12(suppl 1): S7–S10.
  48. Fischer-Lougheed, J., J.H. Liu, E. Espinos, D. Mordasini, C.R. Bader, D. Belin, L. Bernheim (2001) Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. J Cell Biol 153: 677–686.
  49. Friday, B.B., V. Horsley, G.K. Pavlath (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149:657–666.
  50. Frontera, W.R., V.A. Hughes, R.A. Fielding, M.A. Fiatarone, W.J. Evans, R. Roubenoff (2000) Aging of skeletal muscle: A 12-year longitudinal study. J Appl Physiol 88: 1321–1326.
  51. Funk, C.D. (2001) Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294: 1871–1875.
  52. Furling, D., L. Coiffier, V. Mouly, J.P. Barbet, J.L. St Guily, K. Taneja, G. Gourdon, C. Junien, G.S. Butler-Browne (2001) Defective satellite cells in congenital myotonic dystrophy. Hum Mol Genet 10: 2079–2087.

    External Resources

  53. Galbiati, F., B. Razani, M.P. Lisanti (2001) Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 7: 435–441.

    External Resources

  54. Galbiati, F., D. Volonte, J.A. Engelman, P.E. Scherer, M.P. Lisanti (1999) Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 274: 30315–30321.
  55. Gilfix, B.M., B.D. Sanwal (1980) Inhibition of myoblast fusion by tunicamycin and pantomycin. Biochem Biophys Res Commun 96: 1184–1191.
  56. Gorza, L., M. Vitadello (2000) Reduced amount of the glucose-regulated protein GRP94 in skeletal myoblasts results in loss of fusion competence. FASEB J 14: 461–475.
  57. Granata, A.L., C. Vecchi, L. Graciotti, G. Fulgenzi, S. Maggi, A. Corsi (1998) Gamma irradiation can reduce muscle damage in mdx dystrophic mice. Acta Neuropathol (Berl) 96: 564–568.
  58. Greve, J.M., D.I. Gottlieb (1982) Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J Cell Biochem 18: 221–229.
  59. Ho, S.N., D.J. Thomas, L.A. Timmerman, X. Li, U. Francke, G.R. Crabtree (1995) NFATc3, a lymphoid-specific NFATc family member that is calcium- regulated and exhibits distinct DNA binding specificity. J Biol Chem 270:19898–19907.
  60. Hoey, T., Y.L. Sun, K. Williamson, X. Xu (1995) Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2: 461–472.
  61. Horsley, V., B.B. Friday, S. Matteson, K.M. Kegley, J. Gephart, G.K. Pavlath (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153: 329–338.
  62. Horsley, V., K.M. Jansen, S.T. Mills, G.K. Pavlath (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113: 483–494.
  63. Horsley, V., G.K. Pavlath (2002) NFAT: Ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 156: 771–774.
  64. Horsley, V., G.K. Pavlath (2003) Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol 161: 111–118.
  65. Huet, C., Z.F. Li, H.Z. Liu, R.A. Black, M.F. Galliano, E. Engvall (2001) Skeletal muscle cell hypertrophy induced by inhibitors of metalloproteases; myostatin as a potential mediator. Am J Physiol Cell Physiol 281: C1624–C1634.
  66. Jane, D.T., L. DaSilva, J. Koblinski, M. Horwitz, B.F. Sloane, M.J. Dufresne (2002) Evidence for the involvement of cathepsin B in skeletal myoblast differentiation. J Cell Biochem 84: 520–531.
  67. Kitazawa, S., F.P. Ross, K. McHugh, S.L. Teitelbaum (1995) Interleukin-4 induces expression of the integrin alpha v beta 3 via transactivation of the beta 3 gene. J Biol Chem 270: 4115–4120.
  68. Knudsen, K.A. (1992) Membrane fusion; in Hoekstra, D. (ed): Membrane Fusion. New York, Dekker, pp 601–626.
  69. Knudsen, K.A., A.F. Horwitz (1977) Tandem events in myoblast fusion. Dev Biol 58: 328–338.
  70. Konigsberg, I.R. (1961) Some aspects of myogenesis in vitro. Circulation 24: 447.

    External Resources

  71. Konigsberg, I.R. (1971) Diffusion-mediated control of myoblast fusion. Dev Biol 26: 133–152.
  72. Lash, J.W., H. Holtzer, H. Swift (1957) Regeneration of mature skeletal muscle. Anat Rec 128:679–697.

    External Resources

  73. Lieber, R.L. (1992) Skeletal Muscle Structure and Function. Baltimore, Williams & Wilkins.
  74. Lipton, B.H., I.R. Konigsberg (1972) A fine-structural analysis of the fusion of myogenic cells. J Cell Biol 53: 348–364.
  75. Liu, J.H., P. Bijlenga, J. Fischer-Lougheed, T. Occhiodoro, A. Kaelin, C.R. Bader, L. Bernheim (1998) Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. J Physiol 510: 467–476.
  76. McCaffrey, P.G., B.A. Perrino, T.R. Soderling, A. Rao (1993) NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs. J Biol Chem 268: 3747–3752.
  77. McInnes, A., D.M. Rennick (1988) Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J Exp Med 167: 598–611.
  78. McLennan, I.S. (1987) Hormonal regulation of myoblast proliferation and myotube production in vivo: Influence of prostaglandins. J Exp Zool 241: 237–245.
  79. McNally, A.K., J.M. Anderson (1995) Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol 147: 1487–1499.
  80. McNally, A.K., J.M. Anderson (2002) Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol 160:621–630.

    External Resources

  81. Minetti, C., F. Sotgia, C. Bruno, P. Scartezzini, P. Broda, M. Bado, E. Masetti, M. Mazzocco, A. Egeo, M.A. Donati, D. Volonte, F. Galbiati, G. Cordone, F.D. Bricarelli, M.P. Lisanti, F. Zara (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18: 365–368.
  82. Mintz, B., W.W. Baker (1967) Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci USA 58: 592–598.
  83. Mitchell, P.O., G.K. Pavlath (2001) A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy. Am J Physiol Cell Physiol 281: C1706–C1715.
  84. Miyado, K., G. Yamada, S. Yamada, H. Hasuwa, Y. Nakamura, F. Ryu, K. Suzuki, K. Kosai, K. Inoue, A. Ogura, M. Okabe, E. Mekada (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287: 321–324.
  85. Moss, F.P. (1968) The relationship between the dimensions of the fibres and the number of nuclei during normal growth of skeletal muscle in domestic fowl. Am J Anat 122: 555–564.
  86. Moss, F.P., C.P. Leblond (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170: 421–435.
  87. Mozdziak, P.E., E. Schultz, R.G. Cassens (1997) Myonuclear accretion is a major determinant of avian skeletal muscle growth. Am J Physiol 272: C565–C571.
  88. Muroya, S., H. Takagi, S. Tajima, A. Asano (1994) Selective inhibition of a step of myotube formation with wheat germ agglutinin in a murine myoblast cell line, C2C12. Cell Struct Funct 19: 241–252.
  89. Nicchitta, C.V. (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10: 103–109.
  90. Northrop, J.P., K.S. Ullman, G.R. Crabtree (1993) Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NF-AT) complex. J Biol Chem 268: 2917–2923.
  91. Okazaki, K., H. Holtzer (1965) An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem 13: 726–739.
  92. Partridge, T. (2002) Myoblast transplantation. Neuromuscul Disord 12(suppl 1): S3–S6.

    External Resources

  93. Paterson, B., R.C. Strohman (1972) Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev Biol 29: 113–138.
  94. Przybylski, R.J., J.M. Blumberg (1966) Ultrastructural aspects of myogenesis in the chick. Lab Invest 15: 836–863.
  95. Przybylski, R.J., V. Szigeti, S. Davidheiser, A.C. Kirby (1994) Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects. Cell Calcium 15: 132–142.
  96. Rao, A., C. Luo, P.G. Hogan (1997) Transcription factors of the NFAT family: Regulation and function. Annu Rev Immunol 15: 707–747.
  97. Rapuano, M., A.F. Ross, J. Prives (1989) Opposing effects of calcium entry and phorbol esters on fusion of chick muscle cells. Dev Biol 134: 271–278.
  98. Rash, J.E., D. Fambrough (1973) Ultrastructural and electrophysiological correlates of cell coupling and cytoplasmic fusion during myogenesis in vitro. Dev Biol 30: 166–186.
  99. Rau, A., D. Buttgereit, A. Holz, R. Fetter, S.K. Doberstein, A. Paululat, N. Staudt, J. Skeath, A.M. Michelson, R. Renkawitz-Pohl (2001) rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 128: 5061–5073.
  100. Robertson, T.A., M.D. Grounds, C.A. Mitchell, J.M. Papadimitriou (1990) Fusion between myogenic cells in vivo: An ultrastructural study in regenerating murine skeletal muscle. J Struct Biol 105: 170–182.
  101. Rosen, G.D., J.R. Sanes, R. LaChance, J.M. Cunningham, J. Roman, D.C. Dean (1992) Roles for the integrin VLA-4 and its counterreceptor VCAM-1 in myogenesis. Cell 69: 1107–1119.
  102. Rossi, M.J., M.A. Clark, S.M. Steiner (1989) Possible role of prostaglandins in the regulation of mouse myoblasts. J Cell Physiol 141: 142–147.
  103. Ruiz-Gomez, M., N. Coutts, A. Price, M.V. Taylor, M. Bate (2000) Drosophila dumbfounded: A myoblast attractant essential for fusion. Cell 102: 189–198.
  104. Sandra, A., M.A. Leon, R.J. Przybylski (1977) Suppression of myoblast fusion by concanavalin A: Possible involvement of membrane fluidity. J Cell Sci 28: 251–272.
  105. Schleimer, R.P., S.A. Sterbinsky, J. Kaiser, C.A. Bickel, D.A. Klunk, K. Tomioka, W. Newman, F.W. Luscinskas, M.A. Gimbrone, Jr., B.W. McIntyre, et al. (1992) IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148: 1086–1092.
  106. Schollmeyer, J.E. (1986) Role of Ca2+ and Ca2+-activated protease in myoblast fusion. Exp Cell Res 162: 411–422.
  107. Schubert, D., H. Tarikas, S. Humphreys, S. Heinemann, J. Patrick (1973) Protein synthesis and secretion in a myogenic cell line. Dev Biol 33:18–37.
  108. Schwander, M., M. Leu, M. Stumm, O.M. Dorchies, U.T. Ruegg, J. Schittny, U. Muller (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4: 673–685.
  109. Seiden, D. (1976) Quantitative analysis of muscle cell changes in compensatory hypertrophy and work-induced hypertrophy. Am J Anat 145:459–465.
  110. Seigneurin-Venin, S., E. Parrish, I. Marty, F. Rieger, G. Romey, M. Villaz, L. Garcia (1996) Involvement of the dihydropyridine receptor and internal Ca2+ stores in myoblast fusion. Exp Cell Res 223: 301–307.
  111. Shainberg, A., G. Yagil, D. Yaffe (1969) Control of myogenesis in vitro by Ca2+ concentration in nutritional medium. Exp Cell Res 58: 163–167.
  112. Song, K.S., P.E. Scherer, Z. Tang, T. Okamoto, S. Li, M. Chafel, C. Chu, D.S. Kohtz, M.P. Lisanti (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271: 15160–15165.
  113. Stockdale, F.E. (1970) Changing levels of DNA polymerase activity during the development of skeletal muscle tissue in vivo. Dev Biol 21: 462–474.
  114. Stockdale, F.E., H. Holtzer (1961) DNA synthesis and myogenesis. Exp Cell Res 24: 508–520.
  115. Tachibana, I., M.E. Hemler (1999) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol 146: 893–904.
  116. Taylor, M.V. (2002) Muscle differentiation: How two cells become one. Curr Biol 12: R224–R228.

    External Resources

  117. Temm-Grove, C.J., D. Wert, V.F. Thompson, R.E. Allen, D.E. Goll (1999) Microinjection of calpastatin inhibits fusion in myoblasts. Exp Cell Res 247: 293–303.
  118. Templeton, G.H., M. Padalino, R. Moss (1986) Influences of inactivity and indomethacin on soleus phosphatidylethanolamine and size. Prostaglandins 31: 545–559.
  119. Tumber, A., H.M. Morgan, M.C. Meikle, P.A. Hill (2001) Human breast-cancer cells stimulate the fusion, migration and resorptive activity of osteoclasts in bone explants. Int J Cancer 91: 665–672.
  120. Vandenburgh, H.H., S. Hatfaludy, I. Sohar, J. Shansky (1990) Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am J Physiol 259: C232–C240.
  121. Vignery, A. (2000) Osteoclasts and giant cells: Macrophage-macrophage fusion mechanism. Int J Exp Pathol 81: 291–304.
  122. Wakelam, M.J. (1985) The fusion of myoblasts. Biochem J 228: 1–12.
  123. Yagami-Hiromasa, T., T. Sato, T. Kurisaki, K. Kamijo, Y. Nabeshima, A. Fujisawa-Sehara (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377: 652–656.
  124. Yang, J.T., T.A. Rando, W.A. Mohler, H. Rayburn, H.M. Blau, R.O. Hynes (1996) Genetic analysis of alpha 4 integrin functions in the development of mouse skeletal muscle. J Cell Biol 135: 829–835.
  125. Yeoh, G.C., H. Holtzer (1977) The effect of cell density, conditioned medium and cytosine arabinoside on myogenesis in primary and secondary cultures. Exp Cell Res 104: 63–78.
  126. Yew, S.F., K.A. Reeves, B. Woodward (1998) Effects of prostaglandin F2 alpha on intracellular pH, intracellular calcium, cell shortening and L-type calcium currents in rat myocytes. Cardiovasc Res 40: 538–545.
  127. Yousufzai, S.Y., A.A. Abdel-Latif (1998) Tyrosine kinase inhibitors suppress prostaglandin F2alpha-induced phosphoinositide hydrolysis, Ca2+ elevation and contraction in iris sphincter smooth muscle. Eur J Pharmacol 360: 185–193.

    External Resources

  128. Zalin, R.J. (1977) Prostaglandins and myoblast fusion. Dev Biol 59: 241–248.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50