Journal Mobile Options
Table of Contents
Vol. 25, No. 6, 2003
Issue release date: November–December (February 2004)
Section title: Original Paper
Dev Neurosci 2003;25:412–420
(DOI:10.1159/000075667)

Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons

Jorgenson L.A. · Wobken J.D. · Georgieff M.K.
Departments of Pediatrics, Child Psychology, and Neuroscience, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minn., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 9.00
Account: USD 8.00

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: 9/3/2003
Accepted: 10/15/2003
Published online: 2/20/2004

Number of Print Pages: 9
Number of Figures: 3
Number of Tables: 4

ISSN: 0378-5866 (Print)
eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE

Abstract

Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predominantly postnatal in rodents, iron transport proteins and their messenger RNA stabilizing proteins are upregulated, suggesting an increased demand for iron import during this developmental period. Rat pups deprived of iron during the perinatal period show a 30–40% decrease in hippocampal metabolic activity during postnatal hippocampal development. We hypothesized that this reduced hippocampal neuronal metabolism impedes developmental processes such as neurite outgrowth. The goals of the current study were to investigate the effects of perinatal iron deficiency on apical dendritic segment growth in the postnatal day (P) 15 hippocampus and to determine if structural abnormalities persist into adulthood (P65) following iron treatment. Qualitative and quantitative immunohistochemical analyses of dendritic structure and growth using microtubule-associated protein-2 as an index showed that iron-deficient P15 pups have truncated apical dendritic morphology in CA1 and a persistence of an immature apical dendritic pattern at P65. These results demonstrate that perinatal iron deficiency disrupts developmental processes in the hippocampal subarea CA1 and that these changes persist despite iron repletion. These structural abnormalities may contribute to the learning and memory deficits that occur during and following early iron deficiency.


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: 9/3/2003
Accepted: 10/15/2003
Published online: 2/20/2004

Number of Print Pages: 9
Number of Figures: 3
Number of Tables: 4

ISSN: 0378-5866 (Print)
eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.