Journal Mobile Options
Table of Contents
Vol. 36, No. 1, 2004
Issue release date: January–February 2004

The Zebrafish as a Model Organism for Eye Development

Glass A.S. · Dahm R.
To view the fulltext, log in and/or choose pay-per-view option

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

In recent years, the zebrafish has become a favourite model organism for biologists studying developmental processes in vertebrates. Its rapid embryonic development, the transparency of its embryos, the large number of offspring together with several other advantages make it ideal for discovering and understanding the genes that regulate embryonic development as well as the physiology of the adult organism. Zebrafish are very visually orientated, and their retina and lens show much the same morphology as other vertebrates including humans. For this reason, they are well suited for examining ocular development, function and disease. This review describes the advantages of the zebrafish as a model organism as well as giving an overview of eye development in this species. It has a particular focus on morphological as well as molecular aspects of the development of the lens.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Nüsslein-Volhard C, Gilmour DT, Dahm R: Zebrafish as a system to study development and organogenesis; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002.
  2. Streisinger G, Walker C, Dower N, Knauber D, Singer F: Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981;291:293–296.
  3. Brand M, Granato M, Nüsslein-Volhard C: Keeping and raising zebrafish; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002, pp 7–37.
  4. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995;203:253–310.
  5. Dahm R: Atlas of embryonic stages of development in the zebrafish; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002.
  6. Baier H, Klostermann S, Trowe T, Karlstrom RO, Nüsslein-Volhard C, Bonhoeffer F: Genetic dissection of the retinotectal projection. Development 1996;123:415–425.
  7. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C: A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996;123:37–46.
  8. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C: The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996;123:1–36.
  9. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE: A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 1995;92:10545–10549.
  10. Endo A, Ingalls T: Chromosomes of the zebra fish: A model for cytogenetic, embryologic, and ecologic study. J Hered 1968;59:382–384.
  11. Amores A, Postlethwaite J: Banded chromosomes and the zebrafish karyotype. Methods Cell Biol 1999;60:323–338.
  12. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ: A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 1998;18:338–343.
  13. Knapik EW, Goodman A, Atkinson OS, Roberts CT, Shiozawa M, Sim CU, Weksler-Zangen S, Trolliet MR, Futrell C, Innes BA, Koike G, McLaughlin MG, Pierre L, Simon JS, Vilallonga E, Roy M, Chiang PW, Fishman MC, Driever W, Jacob HJ: A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 1996;123:451–460.
  14. Geisler R, Rauch GJ, Baier H, van Bebber F, Brobeta L, Dekens MP, Finger K, Fricke C, Gates MA, Geiger H, Geiger-Rudolph S, Gilmour D, Glaser S, Gnugge L, Habeck H, Hingst K, Holley S, Keenan J, Kirn A, Knaut H, Lashkari D, Maderspacher F, Martyn U, Neuhauss S, Haffter P, et al: A radiation hybrid map of the zebrafish genome. Nat Genet 1999;23:86–89.
  15. Kwok C, Critcher R, Schmitt K: Construction and characterization of zebrafish whole genome radiation hybrids. Methods Cell Biol 1999;60:287–302.
  16. Kwok C, Korn RM, Davis ME, Burt DW, Critcher R, McCarthy L, Paw BH, Zon LI, Goodfellow PN, Schmitt K: Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res 1998;26:3562–3566.
  17. Geisler R: Mapping and cloning; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002, pp 175–212.
  18. Grunwald DJ, Streisinger G: Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 1992;59:103–116.
  19. Gilmour DT, Jessen JR, Lin S: Manipulating gene expression in the zebrafish; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002, pp 121–143.
  20. Nasevicius A, Ekker SC: Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000;26:216–220.
  21. Stenkamp DL, Frey RA: Extraretinal and retinal hedgehog signaling sequentially regulate retinal differentiation in zebrafish. Dev Biol 2003;258:349–363.
  22. Lampert JM, Holzschuh J, Hessel S, Driever W, Vogt K, von Lintig J: Provitamin A conversion to retinal via the beta,beta-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 2003;130:2173–2186.
  23. Kanungo J, Kozmik Z, Swamynathan SK, Piatigorsky J: Gelsolin is a dorsalizing factor in zebrafish. Proc Natl Acad Sci USA 2003;100:3287–3292.
  24. Kawahara A, Chien CB, Dawid IB: The homeobox gene mbx is involved in eye and tectum development. Dev Biol 2002;248:107–117.
  25. van der Sar AM, Zivkovic D, den Hertog J: Eye defects in receptor protein-tyrosine phosphatase alpha knock-down zebrafish. Dev Dyn 2002;223:292–297.
  26. Pelegri F: Mutagenesis; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002, pp 145–174.
  27. Knapik EW: ENU mutagenesis in zebrafish – From genes to complex diseases. Mamm Genome 2000;11:511–519.
  28. Frohnhoeffer HG: Table of zebrafish mutations; in Nüsslein-Volhard C, Dahm R (eds): Zebrafish – A Practical Approach. Oxford, Oxford University Press, 2002.
  29. Vihtelic TS, Hyde DR: Zebrafish mutagenesis yields eye morphological mutants with retinal and lens defects. Vision Res 2002;42:535–540.
  30. Vihtelic TS, Yamamoto Y, Sweeney MT, Jeffery WR, Hyde DR: Arrested differentiation and epithelial cell degeneration in zebrafish lens mutants. Dev Dyn 2001;222:625–636.
  31. Brockerhoff SE, Dowling JE, Hurley JB: Zebrafish retinal mutants. Vision Res 1998;38:1335–1339.
  32. Fadool JM, Brockerhoff SE, Hyatt GA, Dowling JE: Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev Genet 1997;20:288–295.
  33. Furutani-Seiki M, Jiang YJ, Brand M, Heisenberg CP, Houart C, Beuchle D, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nüsslein-Volhard C: Neural degeneration mutants in the zebrafish, Danio rerio. Development 1996;123:229–239.
  34. Heisenberg CP, Brand M, Jiang YJ, Warga RM, Beuchle D, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C: Genes involved in forebrain development in the zebrafish, Danio rerio. Development 1996;123:191–203.
  35. Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Muller BK, Richter S, van Eeden FJ, Nüsslein-Volhard C, Bonhoeffer F: Zebrafish mutations affecting retinotectal axon pathfinding. Development 1996;123:427–438.
  36. Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W: Mutations affecting development of the zebrafish retina. Development 1996;123:263–273.
  37. Trowe T, Klostermann S, Baier H, Granato M, Crawford AD, Grunewald B, Hoffmann H, Karlstrom RO, Meyer SU, Muller B, Richter S, Nüsslein-Volhard C, Bonhoeffer F: Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 1996;123:439–450.
  38. Dahm R, Hooge J, Nuesslein-Volhard C: The Tübingen 2000 screen for zebrafish eye mutants: 14th International Congress of Developmental Biology. Dev Growth Diff 2001;43(suppl):S49.
  39. Dahm R, Glass A, Rojas-Muñoz A, Hooge J: The Tübingen 2000 screen consortium, and Nuesslein-Volhard C: Large-scale mutagenesis screen for zebrafish eye mutants. Annual Meeting of the European Association for Vision and Eye Research (EVER). Ophthalmic Res 2001;33(suppl 1):68.
  40. Dahm R: Lens fibre cell differentiation – A link with apoptosis? Ophthalmic Res 1999;31:163–183.
  41. Vrensen GF, Graw J, De Wolf A: Nuclear breakdown during terminal differentiation of primary lens fibres in mice: A transmission electron microscopic study. Exp Eye Res 1991;52:647–659.
  42. Easter SS Jr, Malicki JJ: The zebrafish eye: Developmental and genetic analysis. Results Probl Cell Differ 2002;40:346–370.
  43. Malicki J, Jo H, Wei X, Hsiung M, Pujic Z: Analysis of gene function in the zebrafish retina. Methods 2002;28:427–438.
  44. Bilotta J, Saszik S: The zebrafish as a model visual system. Int J Dev Neurosci 2001;19:621–629.
  45. Goldsmith P: Modelling eye diseases in zebrafish. Neuroreport 2001;12:A73–A77.

    External Resources

  46. Li L: Genetic and epigenetic analysis of visual system functions of zebrafish. Prog Brain Res 2001;131:555–563.
  47. Baier H, Copenhagen D: Combining physiology and genetics in the zebrafish retina. J Physiol 2000;524:1.
  48. Easter SS Jr: Let there be sight. Neuron 2000;27:193–195.
  49. Malicki J: Harnessing the power of forward genetics – Analysis of neuronal diversity and patterning in the zebrafish retina. Trends Neurosci 2000;23:531–541.
  50. Malicki J: Genetic analysis of eye development in zebrafish; in Fini ME (ed): Vertebrate Eye Development. Heidelberg, Springer, 2000, pp 257–282.
  51. Easter SS Jr, Nicola GN: The development of eye movements in the zebrafish (Danio rerio). Dev Psychobiol 1997;31:267–276.
  52. Easter SS Jr, Nicola GN: The development of vision in the zebrafish (Danio rerio). Dev Biol 1996;180:646–663.
  53. Baker CV, Bronner-Fraser M: Vertebrate cranial placodes. I. Embryonic induction. Dev Biol 2001;232:1–61.
  54. Grainger R: Embryonic lens induction: Shedding light on vertebrate tissue determination. Trends Genet 1992;8:349–355.
  55. Grainger R, Mannion J, Cook TJ, Zygar C: Defining intermediate stages in cell determination: Acquisition of a lens-forming bias in head ectoderm during lens determination. Dev Genet 1997;20:246–257.
  56. Mann I: The Development of the Human Eye. London, British Medical Association, 1969.
  57. Coulombre A: Cataractogenesis: Developmental inputs and considerations. Ophthalmology 1979;86:1559–1570.
  58. Kuszak J: The ultrastructure of epithelial and fiber cells in the crystalline lens. Int Rev Cytol 1995;163:305–350.
  59. Morgenbesser S, Williams B, Jacks T, de Pinho R: p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 1994;317:72–74.
  60. Easter SJ, Nicola G: The development of vision in the zebrafish (Danio rerio). Dev Biol 1996;180:646–663.
  61. Wride MA: Minireview: Apoptosis as seen through a lens. Apoptosis 2000;5:203–209.
  62. Dahm R: Lens fibre cell differentiation – A link with apoptosis? Ophthalmic Res 1999;31:163–183.
  63. Ogino H, Yasuda K: Sequential activation of transcription factors in lens induction. Dev Growth Differ 2000;42:437–448.
  64. Xu Y, Kantorow M, Davis J, Piatigorsky J: Evidence for gelsolin as a corneal crystallin in zebrafish. Biol Chem 2000;275:24645–24652.
  65. Piatigorsky J: Lens crystallins: Innovation associated with changes in gene regulation. J Biol Chem 1992;267:4277–4280.
  66. de Jong W, Hendriks W, Mulders J, Bloemendal H: Evolution of eye lens crystallins: The stress connection. Trends Biochem Sci 1989;14:365–368.
  67. Piatigorsky J, Wistow G: Enzyme/crystallins: Gene sharing as an evolutionary strategy. Cell 1989;57:197–199.
  68. de Jong W, Lubsen NH, Kraft HJ: Molecular evolution of the eye lens. Prog Retin Eye Res 1994;13:391–442.
  69. Kondoh H, Uchikawa M, Yoda H, Takeda H, Furutani-Seiki M, Karlstrom R: Zebrafish mutations in Gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage. Mech Dev 2000;96:165–174.
  70. Kondoh H: Transcription factors for lens development assessed in vivo. Curr Opin Genet Dev 1999;9:301–308.
  71. Piatigorsky J, Kantorow M, Gopal-Srivastava R, Tomarev S: Recruitment of enzymes and stress proteins as lens crystallins. EXS 1994;71:241–250.
  72. Takemoto L, Boyle D: The possible role of α-crystallins in human senile cataractogenesis. Int J Biol Macromol 1998;22:331–337.

    External Resources

  73. Posner M, Kantorow M, Horwitz J: Cloning, sequencing and differential expression of αB-crystallin in the zebrafish, Danio rerio. Biochim Biophys Acta 1999;1447:271–277.
  74. Boyle D, Takemoto L: Characterization of the α-γ and α-β complex: Evidence for an in vivo functional role of α-crystallin as a molecular chaperone. Exp Eye Res 1994;58:9–16.
  75. Horwitz J: α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 1992;89:10449–10453.
  76. Graw J: Genetic aspects of embryonic eye development in vertebrates. Dev Genet 1996;18:181–197.
  77. Bhat S, Nagineni C: αB subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 1989;158:319–325.
  78. Dubin R, Wawrousek E, Piatigorsky J: Expression of the murine αB-crystallin is not restricted to the lens. Mol Cell Biol 1989;9:1083–1091.
  79. Carver J, Lindner R: NMR spectroscopy of α-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Biol Macr 1998;22:197–209.
  80. Smulders R, Carver J, Lindner R, van Boekel M, Bloemendal H, de Jong W: Immobilization of the C-terminal extension of bovine αA-crystallin reduces chaperone function. J Biol Chem 1996;271:29060–29066.
  81. Oliver G, Gruss P: Current views on eye development. Trends Neurosci 1997;20:415–421.
  82. Fini M, Strissel K, West-Mays J: Perspectives on Eye Development. Dev Genet 1997;20:175–185.
  83. Ohtaka-Maruyama C, Hanaoka F, Chepelinsky A: A novel alternative spliced variant of the transcription factor AP2α is expressed in the murine ocular lens. Dev Biol 1998;202:125–135.
  84. Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemoe J, Plehn-Dujowich D, McMahon A, Flavell R, Williams T: Neural tube, skeletal, and body wall defects in mice lacking transcription factor AP-2. Nature 1996;381:238–241.
  85. Schorle H, Meier P, Buchert M, Jaenische R, Mitchell P: Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 1996;381:235–238.
  86. West-Mays J, Williams T, Sadow P, Libby D, Zieske J, Fini M: AP-2 and ocular epithelial morphogenesis. Invest Ophthalmol Vis Sci 1997;38(suppl):2280.
  87. West-Mays J, Zhang J, Nottoli T, Hagopian-Donaldson S, Libby D, Strissel K, Williams T: AP-2α transcription factor is required for early morphogensis of the lens vesicle. Dev Biol 1999;206:46–62.
  88. Hilger-Eversheim K, Moser M, Schorle H, Buettner R: Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 2000;260:1–12.

    External Resources

  89. Behrens J, Lowrick O, Klein-Hipass L, Birchmeier W: The e-cadherin promoter: Functional analysis of the G/C-rich region and an epithelial cell-specific palindromic regulatory region. Proc Natl Acad Sci USA 1991;88:11495–11499.
  90. Tamai K, Kehua L, Uitto J: Identification of a DNA-binding protein recognizing a keratinocyte-specific regulatory element in the 230-kDa bullous pemphigoid antigen. J Biol Chem 1994;269:493–502.
  91. Fini M, Bartlett J, Matsubara M, Rinehart W, Mody M, Girard M, Rainville M: The rabbit gene for 92 kDa matrix metalloproteinase: Role of AP1 and AP2 in cell type-specific transcription. J Biol Chem 1994;269:28620–28628.
  92. Batsche E, Muchardt C, Behrens J, Hurst H, Cremisi C: RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998;18:3647–3658.
  93. Li B, Paradies N, Brackenbury R: Isolation and characterization of the promoter region of the chicken N-cadherin gene. Gene 1997;191:7–13.
  94. Ohtaka-Maruyama C, Wang X, Ge H, Chepelinsky A: Overlapping Sp1 and AP2 binding sites in a promoter element of the lens-specific MIP gene. Nucleic Acids Res 1998;26:407–414.
  95. Masaki S, Kamachi Y, Quinlan R, Yonezawa S, Kondoh H: Identification and functional analysis of the mouse lens filensin promoter. Gene 1998;214:77–86.
  96. Plaza S, Turque N, Dozier C, Bailly M, Saule S: c-myb acts as transcriptional activator of the quail Pax6 (Pax-QNR) promoter through two different mechanisms. Oncogene 1995;10:329–340.
  97. Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R, Eilers M: Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J 1996;14:1508–1519.
  98. Luscher B, Mitchell P, Williams T, Tjian R: Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev 1989;3:1507–1517.
  99. Luo T, Matsuo-Takasaki M, Thomas ML, Weeks DL, Sargent TD: Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus. Dev Biol 2002;245:136–144.
  100. Snape AM, Winning RS, Sargent TD: Transcription factor AP-2 is tissue-specific in Xenopus and is closely related or identical to keratin transcription factor 1 (KTF-1). Development 1991;113:283–293.
  101. French RP, Warshawsky D, Tybor L, Mylniczenko ND, Miller L: Upregulation of AP-2 in the skin of Xenopus laevis during thyroid hormone-induced metamorphosis. Dev Genet 1994;15:356–65.
  102. Xu P, Woo I, Her H, Beier D, Maas R: Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 1997;124:219–231.
  103. Sahly I, Andermann P, Petit C: The zebrafish eya1 gene and its expression pattern during embryogenesis. Dev Genes Evol 1999;209:399–410.
  104. Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H: The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 1989;57:645–58.
  105. Blixt A, Mahlapuu M, Aitola M, Pelto-Huikko M, Enerback S, Carlsson P: A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev 2000;14:245–254.
  106. Brownell I, Dirksen M, Jamrich M: Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis 2000;27:81–93.
  107. Sanyal S, Hawkins RK: Dysgenetic lens (dyl) – A new gene in the mouse. Invest Ophthalmol Vis Sci 1979;18:642–645.
  108. Larsson C, Hellqvist M, Pierrou S, White I, Enerback S, Carlsson P: Chromosomal localization of six human forkhead genes, freac-1 (FKHL5), -3 (FKHL7), -4 (FKHL8), -5 (FKHL9), -6 (FKHL10), and -8 (FKHL12). Genomics 1995;30:464–469.
  109. Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M: Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 2001;10:231–236.
  110. Ormestad M, Blixt A, Churchill A, Martinsson T, Enerback S, Carlsson P: Foxe3 haploinsufficiency in mice: A model for Peters’ anomaly. Invest Ophthalmol Vis Sci 2002;43:1350–1357.
  111. Blank V, Andrews NC: The Maf transcription factors: Regulators of differentiation. Trends Biochem 1997;22:437–441.
  112. Kajihara M, Kawauchi S, Kobayashi M, Ogino H, Takahashi S, Yasuda K: Isolation, Characterization, and expression analysis of zebrafish large Mafs. J Biochem 2001;129:139–146.
  113. Moens C, Cordes S, Giorgianni M, Barsh G, Kimmel C: Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 1998;125:381–391.
  114. Ho I, Hodge M, Rooney J, Glimcher L: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 1996;85:973–983.
  115. Kumar R, Chen S, Scheurer D, Wang Q, Duh E, Sung C, Rehemtulla A, Swaroop A, Adler R, Zack D: The bZip transcription factor Nrl stimulates rhodopsin promoter activity in primary retinal cell cultures. J Biol Chem 1996;271:29612–29618.
  116. Sieweke M, Tekotte H, Frampton J, Graf T: MafB is an interaction partner and repressor of Ets-1 that impacts erythroid differentiation. Cell 1996;85:49–60.
  117. Cordes S, Barsh G: The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 1994;79:1025–1034.
  118. Ogino H, Yasuda K: Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 1998;280:115–118.
  119. Ring B, Cordes S, Overbeek P, Barsh G: Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 2000;127:307–317.
  120. Kawauchi S, Takahashi S, Nakajima O, Ogino H, Morita M, Nishizawa M, Yasuda K, Yamamoto M: Regulation of lens fiber cell differentiation by transcription factor c-Maf. J Biol Chem 1999;274:19254–19260.
  121. Kim J, Li T, Ho I, Grusby M, Glimcher L: Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci USA 1999;96:3781–3785.
  122. Lyon MF, Jamieson RV, Perveen R, Glenister PH, Griffiths R, Boyd Y, Glimcher LH, Favor J, Munier FL, Black GC: A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Hum Mol Genet 2003;12:585–594.
  123. Jamieson RV, Perveen R, Kerr B, Carette M, Yardley J, Heon E, Wirth MG, van Heyningen V, Donnai D, Munier F, Black GC: Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 2002;11:33–42.
  124. Ishibashi S, Yasuda K: Distinct roles of maf genes during Xenopus lens development. Mech Dev 2001;101:155–166.
  125. Moens C, Yan Y, Appel B, Force A, Kimmel C: valentino: A zebrafish gene required for normal hindbrain segmentation. Development 1996;122:3981–3990.
  126. Francis P, Berry V, Moore A, Bhattacharya S: Lens biology: Development and human cataractogenesis. TIG 1999;15:191–196.
  127. Amirthalingam K, Lorens J, Sætre B, Salaneck E, Fjose A: Embryonic expression and DNA-binding properties of zebrafish PAX-6. Biochem Biophys Res Commun 1995;215:122–128.
  128. Puschel A, Gruss P, Westerfield M: Sequence and expression of Pax-6 are highly conserved between zebrafish and mice. Development 1992;114:643–651.
  129. Krauss S, Johanson T, Korzh V, Fjose A: Expression pattern of zebrafish pax genes suggest a role in early brain regionalization. Nature 1991;353:267–270.
  130. Nornes S, Clarkson M, Mikkola I, Pedersen M, Bardsley A, Martinez JP, Krauss S, Johansen T: Zebrafish contains two pax6 genes involved in eye development. Mech Dev 1998;77:185–196.
  131. Li H, Yang J, Jacobson R, Pasko D, Sundin O: Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: Implications for stepwise determination of the lens. Dev Biol 1994;1994:181–194.

    External Resources

  132. Halder G, Callaerts P, Gehring WJ: Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995;267:1788–1792.
  133. Altmann CR, Chow RL, Lang RA, Hemmati-Brivanlou A: Lens induction by Pax-6 in Xenopus laevis. Dev Biol 1997;185:119–123.
  134. Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ: Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci USA 2002;99:2020–2025.
  135. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A: Pax6 induces ectopic eyes in a vertebrate. Development 1999;126:4213–4222.
  136. Hirsch N, Harris WA: Xenopus Pax-6 and retinal development. J Neurobiol 1997;32:45–61.
  137. Mizuno N, Mochii M, Yamamoto TS, Takahashi TC, Eguchi G, Okada TS: Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: Evidence for a genetic program common to embryonic lens development. Differentiation 1999;65:141–149.
  138. Quiring R, Walldorf U, Kloter U, Gehring W: Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science 1994;265:785–789.
  139. Walther C, Gruss P: Pax-6, a murine paired-box gene, is expressed in the developing CNS. Development 1991;113:1435–1449.
  140. Richardson J, Cvekl A, Wistow G: Pax-6 is essential for lens-specific expression of η-crystallin. Proc Natl Acad Sci USA 1995;92:4676–4680.
  141. Cvekl A, Sax C, Bresnick E, Piatigorsky J: A complex array of positive and negative elements regulates the chicken αA-crystallin gene: Involvement of Pax-6, USF, CREB, and/or CREM, and AP-1 proteins. Mol Cell Biol 1994;14:7363–7376.
  142. Duncan M, Haynes J, Cvekl A, Piatigorsky J: Dual roles for Pax-6: A Transcriptional repressor of lens fiber cell-specific β-crystallin genes. Mol Cell Biol 1998;18:5579–5586.
  143. Cvekl A, Piatigorsky J: Lens development and crystallin gene expression: Many roles for Pax-6. Bioessays 1996;18:621–630.
  144. Torres M, Gomez-Pardo E, Gruss P: Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 1996;122:3381–3391.
  145. Nornes H, Dressler G, Knapik E, Deutsch U, Gruss P: Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 1990;109:797–809.
  146. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K: The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 1996;93:13870–13875.
  147. Sanyanusin P, Schimmenti L, McNoe L, Ward T, Pierpont M, Sullivan M, Dobyns W, Eccles M: Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995;9:358–364.
  148. Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M: Characterization of three novel members of the zebrafish Pax2/5/8 family: Dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 1998;125:3063–3074.
  149. Gage P, Suh H, Camper S: The bicoid-related Pitx gene family in development. Mamm Genome 1999;10:197–200.
  150. Hollemann T, Pieler T: Xpitx-1: A homeobox gene expressed during pituitary and cement gland formation of Xenopus embryos. Mech Dev 1999;88:249–252.
  151. Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, Nowotschin S, Viebahn C, Haffter P, Kuehn MR, Blum M: The homeobox gene Pitx2: Mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 1999;126:1225–1234.
  152. Semina E, Reiter R, Leysens N, Alward W, Small K, Datson N, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel B, Carey J, Murray J: Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996;14:392–399.
  153. Essner JJ, Branford WW, Zhang J, Yost HJ: Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 2000;127:1081–1093.
  154. Semina EV, Murray JC, Reiter R, Hrstka RF, Graw J: Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 2000;9:1575–1585.
  155. Grimm C, Chatterjee B, Favor J, Immervoll T, Loster J, Klopp N, Sandulache R, Graw J: Aphakia (ak), a mouse mutation affecting early eye development: Fine mapping, consideration of candidate genes and altered Pax6 and Six3 gene expression pattern. Dev Genet 1998;23:299–316.
  156. Semina E, Reiter R, Murray J: Isolation of a new homeobox gene belonging to the Pitx/Rieg family: Expression during lens development and mapping to aphakia region on mouse chromosome 19. Hum Mol Genet 1997;6:2109–2116.
  157. Varnum D, Stevens L: Aphakia, a new mutation in the mouse. J Hered 1968;59:147–150.
  158. Semina E, Ferrell R, Mintz-Hittner H, Bitoun P, Alward W, Reiter R, Funkhauser C, Daack-Hirsch S, Murray J: A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 1998;19:167–170.
  159. Tomarev S, Sundin O, Banerjee-Basu S, Duncan M, Yang J, Piatigorsky J: Chicken homeobox gene Prox1 related to Drosophila prospero is expressed in the developing lens and retina. Dev Dyn 1996;206:354–367.
  160. Wigle J, Chowdhury K, Gruss P, Oliver G: Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 1999;21:318–322.
  161. Glasgow E, Tomarev S: Restricted expression of the homeobox gene prox 1 in developing zebrafish. Mech Dev 1998;76:175–178.
  162. Oliver G, Mailhos A, Wehr R, Copeland N, Jenkins N, Gruss P: Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 1995;121:4045–4055.
  163. Oliver G, Wehr R, Jenkins N, Copeland N, Cheyette B, Hartenstein V, Zipursky S, Gruss P: Homeobox genes and connective tissue patterning. Development 1995;121:693–705.
  164. Seo H, Drivenes O, Ellingsen S, Fjose A: Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev 1998;73:45–57.
  165. Oliver G, Loosli F, Koster R, Wittbrodt J, Gruss P: Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech Dev 1996;60:233–239.
  166. Zhou X, Hollemann T, Pieler T, Gruss P: Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech Dev 2000;91:327–330.
  167. Ghanbari H, Seo HC, Fjose A, Brandli AW: Molecular cloning and embryonic expression of Xenopus Six homeobox genes. Mech Dev 2001;101:271–277.
  168. Bernier G, Panitz F, Zhou X, Hollemann T, Gruss P, Pieler T: Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mech Dev 2000;93:59–69.
  169. Pevny L, Lovell-Badge R: Sox genes find their feet. Curr Opin Genet Dev 1997;7:338–344.

    External Resources

  170. Kamachi Y, Uchikawa M, Collignon J, Lovell-Badge R, Kondoh H: Involvement of Sox 1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 1998;125:2521–2532.
  171. Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR: Mutations in SOX2 cause anophthalmia. Nat Genet 2003;33:461–463.
  172. Vriz S, Lovell-Badge R: The zebrafish Zf-Sox 19 protein: A novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene 1995;153:275–276.

    External Resources

  173. Bowles J, Schepers G, Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000;227:239–255.

    External Resources

  174. Vriz S, Joly C, Boulekbache H, Condamine H: Zygotic expression of the zebrafish Sox-19, an HMG box-containing gene, suggests an involvement in central nervous system development. Mol Brain Res 1996;40:221–228.
  175. Rex M, Uwanogho D, Orme A, Scotting P, Sharpe P: cSox21 exhibits a complex and dynamic pattern of transcription during embryonic development of the chick central nervous system. Mech Dev 1997;66:39–53.
  176. De Martino S, Errington F, Ashworth A, Jowett T, Austin C: sox30:A novel zebrafish sox gene expressed in a restricted manner at the midbrain-hindbrain boundary during neurogenesis. Dev Genes Evol 1999;209:357–362.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50