Journal Mobile Options
Table of Contents
Vol. 6, No. 2, 2003
Issue release date: March 2004
J Mol Microbiol Biotechnol 2003;6:109–126

A Global Approach to Identify Novel Broad-Spectrum Antibacterial Targets among Proteins of Unknown Function

Zalacain M. · Biswas S. · Ingraham K.A. · Ambrad J. · Bryant A. · Chalker A.F. · Iordanescu S. · Fan J. · Fan F. · Lunsford R.D. · O’Dwyer K. · Palmer L.M. · So C. · Sylvester D. · Volker C. · Warren P. · McDevitt D. · Brown J.R. · Holmes D.J. · Burnham M.K.R.
aMicrobial, Musculoskeletal and Proliferative Diseases CEDD and bBioinformatics, GlaxoSmithKline Research and Development, Collegeville, Pa., USA

Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in


Attempted allelic replacement of 144 Streptococcus pneumoniae open reading frames of previously uncharacterized function led to the identification of 36 genes essential for growth under laboratory conditions. Of these, 14 genes (obg, spoIIIJ2, trmU, yacA, yacM, ydiC, ydiE, yjbN, yneS, yphC, ysxC, ytaG, yloI and yxeH4) were also essential in Staphylococcus aureus and Haemophilus influenzae or Escherichia coli, 2 genes (yrrK and ydiB) were only essential in H. influenzae as well as S. pneumoniae and 8 genes were necessary for growth of S.pneumoniae and S. aureus and did not have a homolog in H. influenzae(murD2, ykqC, ylqF, yqeH, ytgP, yybQ) or were not essential in that organism (yqeL, yhcT). The proteins encoded by these genes could represent good targets for novel antibiotics covering different therapeutic profiles. The putative functions of some of these essential proteins, inferred by bioinformatic analysis, are presented. Four mutants, with deletions of loci not essential for in vitro growth, were found to be severely attenuated in a murine respiratory tract infection model, suggesting that not all targets for antibacterial therapeutics are revealed by simple in vitro essentiality testing. The results of our experiments together with those collated from previously reported studies including Bacillus subtilis, E. coli and Mycoplasma sp. demonstrate that gene conservation amongst bacteria does not necessarily indicate that essentiality in one organism can be extrapolated to others. Moreover, this study demonstrates that different experimental procedures can produce apparently contradictory results.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.


  1. Abdullah, K.M., Lo, R.Y., and Mellors, A. 1991. Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J. Bacteriol. 173:5597–5603.
  2. Akerley, B.J., Rubin, E.J., Novick, V.L., Amaya, K., Judson N., and Mekalanos, J.J. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99:966–971.
  3. Alexander, H.E., and Leidy, G. 1951. Transformation of type specificity of Haemophilus influenzae. Proc. Soc. Exp. Biol. Med. 73:485–487.
  4. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
  5. Aravind, L., Makarova, K.S., and Koonin, E.V. 2000. Survey and Summary: Holliday junction resolvases and related nucleases: Identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 28:3417–3432.
  6. Arigoni, F., Talabot, F., Peitsch, M., Edgerton, M.D., Meldrum, E., Allet, E., Fish, R., Jamotte, T., Curchod, M.L., and Loferer, H. 1998. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16:851–856.
  7. Begg, K.J., and Donachie, W.D. 1985. Cell shape and division in Escherichia coli: Experiments with shape and division mutants. J. Bacteriol. 163:615–622.
  8. Brown, J.R., and Warren, P.V. 1998. Antibiotic discovery: Is it in the genes? Drug Discov. Today 3:564–566.
  9. Cabedo, H., Macian, F., Villarroya, M., Escudero, J.C., Martinez-Vicente, M., Knecht, E., and Armengod, M.E. 1999. The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J. 18:7063–7076.
  10. Chan, P.F., O’ Dwyer, K., Palmer, L.M., Ambrad, J., Ingraham, K.A., So, C., Lonetto, M.A., Biswas, S., Rosenberg, M., Holmes, D.J., and Zalacain, M. 2003. Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode of action studies in Streptococcus pneumoniae. J. Bacteriol. 185:2051–2058.
  11. Danner, D.B., Deich, R.A., Sisco, K.L., and Smith, H.O. 1980. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11:311–318.
  12. Dassain, M.L., Leroy, A., Colosetti, L., Carole, S., and Bouche, J.P. 1999. A new essential gene of the ‘minimal genome’ affecting cell division. Biochemie 81:889–895.
  13. Fan, F., Lunsford, R.D., Sylvester, D., Fan, J., Celesnik, H., Iordanescu, S., Rosenberg, M., and McDevitt, D. 2001. Regulated ecotopic expression and allelic-replacement mutagenesis as a method for gene essentiality testing in Staphylococcus aureus. Plasmid 46:71–75.
  14. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.6a2. Distributed by the author:, Department of Genetics, University of Washington, Seattle.
  15. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.-F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton, G.G., FitzHugh, W., Fields, C.A., Gocayne, J.D., Scott, J.D., Shirley, R., Liu, L.I., Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, T., Hedblom, E., Cotton, M.D., Utterback, T., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrmann, J.L., Geoghagen, N.S., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O., and Venter, J.C. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.
  16. Freiberg, C., Wieland, B., Spaltmann, F., Ehlert, K., Brotz, H., and Labischinski, H. 2001. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J. Mol. Microbiol. Biotechnol. 3:483–489.
  17. Green, S.M., Malik, T., Giles, I.G., and Drabble, W.T. 1996. The purB gene of Escherichia coli K-12 is located in an operon. Microbiology 142:3219–3230.
  18. Havarstein, L.S., Coomarswamy, G., and Morrison, D.A. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92:11140–11144.
  19. Hardy, G.G., Caimano, M.J., and Yother, J. 2000. Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J. Bacteriol. 182:1854–1863.
  20. Henriques, A.O., Glaser, P., Piggot, P.J., and Moran, C.P. Jr. 1998. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28:235–247.
  21. Horinouchi, S., and B. Weisblum. 1982a. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type-B antibiotics. J. Bacteriol. 150:804–814.
  22. Horinouchi S., and Weisblum B. 1982b. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150:815–825.
  23. Horton, R.M., Cai, Z., Ho, S.N., and Pease, L.R. 1990. Gene splicing by overlap extensions: Tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535.
  24. Hoskins, J., Alborn, W.E. Jr., Arnold,. J., Blaszczak, L.C., Burgett, S., DeHoff, B.S., Estrem, S.T., Fritz, L., Fu, D.J., Fuller, W., Geringer, C., Gilmour, R., Glass, J.S., Khoja, H., Kraft, A.R., Lagace, R.E., LeBlanc, D.J., Lee, L.N., Lefkowitz, E.J., Lu, J., Matsushima, P., McAhren, S.M., McHenney, M., McLeaster, K., Mundy, C.W., Nicas, T.I., Norris, F.H., O’Gara, M., Peery, R.B., Robertson, G.T., Rockey, P., Sun, P.M., Winkler, M.E., Yang, Y., Young-Bellido, M., Zhao, G., Zook, C.A., Baltz, R.H., Jaskunas, S.R., Rosteck P.R. Jr., Skatrud, P.L., and Glass, J.I. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183:5709–5717.
  25. Hutchison, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O., and Venter, J.C. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169.
  26. Hwang, J., and Inouye, M. 2001. An essential GTPase, Der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J. Biol. Chem. 276:31415–31421.
  27. Inada, T., Kawakami, K., Chen, S.M., Takiff, H.E., Court, D.L., and Nakamura, Y. 1989. Temperature-sensitive lethal mutant of era, a G protein in Escherichia coli. J. Bacteriol. 171:5017–5024.
  28. Ji, Y., Zhang, B., Van Horn, S.F., Warren, P., Woodnutt, G., Burnham, M.K.R., and Rosenberg, M. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:2266–2269.
  29. Kambampati, R., and Lauhon, C.T. 1999. IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry 38:16561–16568.
  30. Kawai, S., Mori, S., Mukai, T., Suzuki, S., Yamada, T., Hashimoto, W., and Murata, K. 2000. Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun. 276:57–63.
  31. Khan, S., and Novick, R.P. 1983. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251–259.
  32. Kobayashi, G., Moriya, S. and Wada, C. 2001. Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol. Microbiol. 41:1037–1051.
  33. Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S.C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L.C., Danchin, A., Debarbouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R., Hecker, M., Hosoya, D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, I., Le Coq, D., Masson, A., Mauel, C., Meima, R., Mellado, R.P., Moir, A., Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T., O’Reilly, M., O’Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, T., Saxild, H.H., Scanlan, E., Schumann, W., Seegers, J.F., Sekiguchi, J., Sekowska, A., Seror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., Van Dijl, J.M., Watabe, K., Wipat, A., Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H., Zuber, U., and Ogasawara, N. 2003. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683.
  34. Koonin, E.V., and Tatusov, R.L. 1994. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J. Mol. Biol. 244:125–132
  35. Kraus, A., and Iandolo, J.J. 1990. High-frequency transformation of Staphylococcus aureus by electroporation. Curr. Microbiol. 21:373–376.
  36. Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. 2000. Molecular characterization of lantibiotic-synthesizing enzyme EpiD reveals a function for bacterial Dfp proteins in coenzyme A biosynthesis. J. Biol. Chem. 275:31838–31846.
  37. Lacks, S. 1966. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics 53:207–235.
  38. March, P.E., Lerner, C.G., Ahnn, J., Cui, X., and Inouye, M. 1988. The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. Oncogene 2:539–544.
  39. Martin, B., Alloing, G., Mejean, V., and Claverys, J.P. 1987. Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAMβ1 results from deletion of 5′ leader peptide sequences. Plasmid 18:250–253.
  40. Mishra, P., Park, P.K., and Drueckhammer, D.G. 2001. Identification of yacE (coaE) as the structural gene for dephosphocoenzyme A kinase in Escherichia coli K-12. J. Bacteriol. 183:2774–2778.
  41. Morimoto, T., Loh, P.C., Hirai, T., Asai, K., Kobayashi, K., Moriya, S., and Ogasawara, N. 2002. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148:3539–3552.
  42. Nikawa, J., and Kawabata, M. 1998. PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae. Nucleic Acids Res. 26:860–861.
  43. Novick, R.P. 1991. Genetic systems in staphylococci. Methods Enzymol. 204:587–636.
  44. Pozzi, G., and Guild, W.R. 1985. Modes of integration of heterologous plasmid DNA into the chromosome of Streptococcus pneumoniae. J. Bacteriol. 161:909–912.
  45. Rawlings, M., and Cronan, J.E. Jr. 1992. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J. Biol. Chem. 267:5751–5754.
  46. Reich, K.A., Chovan, L., and Hessler, P. 1999. Genome scanning in Haemophilus influenzae for identification of essential genes. J. Bacteriol. 181:4961–4968.
  47. Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A., and Zenk, M.H. 1999. Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc. Natl. Acad. Sci. USA 96:11758–11763.
  48. Rowland, B., Hill, K., Miller, P., Driscoll, J., and Taber, H. 1995. Structural organization of a Bacillus subtilis operon encoding menaquinone biosynthetic enzymes. Gene 167:105–109.
  49. Samuelson, J.C., Chen, M., Jiang, F., Moller, I., Wiedmann, M., Kuhn, A., Phillips, G.J., and Dalbey, R.E. 2000. YidC mediates membrane protein insertion in bacteria. Nature 406:637–641.
  50. Spenser, H.T., and Herriott, R.M. 1965. Development of competence in Haemophilus influenzae. J. Bacteriol. 90:911–920.
  51. Strauss, E., Kinsland, C., Ge, Y., McLafferty, F.W., and Begley T.P. 2001. Phosphopantothenoylcysteine synthetase from Escherichia coli. Identification and characterization of the last unidentified coenzyme A biosynthetic enzyme in bacteria. J. Biol. Chem. 276:13513–13516.
  52. Teplyakov, A., Obmolova, G., Tordova, M., Thanki, N., Bonander, N., Eisenstein, E., Howard, A.J., and Gilliland, G.L. 2002. Crystal structure of the YjeE protein from Haemophilus influenzae: A putative Atpase involved in cell wall synthesis. Proteins 48:220–226.
  53. Thanassi, J.A., Hartman-Neumann, S.L., Dougherty, T.J., Dougherty, B.A., and Pucci, M.J. 2002. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30:3152–3162.
  54. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
  55. Vasseghi, H., Claverys, J.P., and Sicard, A.M. 1981. Mechanisms of integrating foreign DNA during transformation of Streptococcus pneumoniae. In Transformation. M. Polsinelli and G. Mazza, ed. Cotswold Press, Oxford, p. 137–153.
  56. Vassetzky, Y.S., Bogdanova, A.N., and Razin, S.V. 2000. Analysis of the chicken DNA fragments that contain structural sites of attachment to the nuclear matrix: DNA-matrix interactions and replication. J. Cell. Biochem. 79:1–14.
  57. Yon, J., and Fried, M. 1989. Precise gene fusion by PCR. Nucleic Acids Res. 17:4895.
  58. Young, T.W., Kuhn, N.J., Wadeson, A., Ward, S., Burges, D., and Cooke, G.D. 1998. Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: The first of a new class of soluble pyrophosphatase? Microbiology 144:2563–2571.
  59. Zhang, L., Fan, F., Palmer, L.M., Lonetto, M.A., Petit, C., Voelker, L.L., St John, A., Benkosky, B., Rosenberg, M., and McDevitt, D. 2000. Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene 255:297–305.
  60. Zhao, G., Meier, T.I., Peery, R.B., Matsushima, P., and Skatrud, P.L. 1999. Biochemical and molecular analyses of the C-terminal domain of Era GTPase from Streptococcus pneumoniae. Microbiology 145:791–800.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50