Journal Mobile Options
Table of Contents
Vol. 7, No. 1-2, 2004
Issue release date: May 2004
J Mol Microbiol Biotechnol 2004;7:5–17

Self-Assembly and Type III Protein Export of the Bacterial Flagellum

Minamino T. · Namba K.
aDynamic NanoMachine Project, ICORP, JST, bGraduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan

Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in


The bacterial flagellum is a supramolecular structure consisting of a basal body, a hook and a filament. Most of the flagellar components are translocated across the cytoplasmic membrane by the flagellar type III protein export apparatus in the vicinity of the flagellar base, diffuse down the narrow channel through the nascent structure and self-assemble at its distal end with the help of a cap structure. Flagellar proteins synthesized in the cytoplasm are targeted to the export apparatus with the help of flagellum-specific chaperones and pushed into the channel by an ATPase, whose activity is controlled by its regulator to enable the energy of ATP hydrolysis to be efficiently coupled to the translocation reaction. The export apparatus switches its substrate specificity by monitoring the state of flagellar assembly in the cell exterior, allowing this huge and complex macromolecular assembly to be built efficiently by a highly ordered and well-regulated assembly process.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.


  1. Akiba, T, Yoshimura, H, Namba, K: Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science 1991;252:1544–1546.
  2. Asakura, S: Polymerization of flagellin and polymorphism of flagella. Adv Biophys 1970;1:99–155.
  3. Auvray, F, Ozin, AJ, Claret, L, Hughes, C: Intrinsic membrane targeting of the flagellar export ATPase FliI: Interaction with acidic phospholipids and FliH. J Mol Biol 2002;318:941–950.
  4. Auvray, F, Thomas, J, Fraser, GM, Hughes, C: Flagellin polymerization control by a cytosolic export chaperone. J Mol Biol 2001;308:221–229.
  5. Bennett, JCQ, Thomas, J, Fraser, GM, Hughes, C: Substrate complex and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol 2001;39:781–791.
  6. Berg, HC: Constraints on models for the flagellar motor. Phil Trans Roy Soc B 2000;335:491–502.
  7. Calladine, CR: Construction of bacterial flagella. Nature 1975;225:121–124.
  8. Calladine, CR: Design requirements for the construction of bacterial flagella. J Theor Biol 1976;57:469–489.
  9. Calladine, CR: Change of waveform in bacterial flagella: The role of mechanics at the molecular level. J Mol Biol 1978;118:457–479.
  10. Chilcott, GS, Hughes, KT: The type III secretion determinants of the flagellar anti-transcription factor, FlgM, extended from amino-terminus into the anti-σ28 domain. Mol Microbiol 1998;30:1029–1040.
  11. Claret, L, Susannah, CR, Higgins, M, Hughes, C: Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol Microbiol 2003;48:1349–1355.
  12. Edqvist, PJ, Olsson, J, Lavander, M, Sundberg, L, Forsberg, Å, Wolf-Wanz, H, Lloyd, SA: YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J Bacteriol 2003;185, 2259–2266.
  13. Fahner, KA, Block, SM, Krishnaswamy, S, Parkinson, JP, Berg, HC: A mutant hook-associated protein (HAP3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli. J Mol Biol 1994;238:173–186.
  14. Fan, F, Macnab, RM: Enzymatic characterization of FliI: an ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 1996;271:31981–31988.
  15. Fan, F, Ohnishi, K, Francis, NR, Macnab, RM: The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol Microbiol 1997;26:1035–1046.
  16. Francis, NR, Sosinsky, GE, Thomas, D, DeRosier, DJ: Isolation, characterization, and structure of bacterial flagellar motors containing the switch complex. J Mol Biol 1994;235:1261–1270.
  17. Fraser, GM, Bennett JCQ, Hughes, C: Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 1999;32:569–580.
  18. Fraser, GM, Hirano, T, Ferris, HU, Devgan, LL, Kihara, M, Macnab RM: Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol Microbiol 2003;48:1043–1057.
  19. González-Pedrajo, B, Fraser, GM, Minamino, T, Macnab, RM: Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol 2002;45:967–982.
  20. Hirano, T, Minamino, T, Macnab RM: The Role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol 2001;312:359–369.
  21. Hirano, T, Minamino, T, Namba, K, Macnab, RM: Substrate specificity classes and the recognition signal for Salmonella type III flagellar export. J Bacteriol 2003;185:2485–2492.
  22. Hirano, T, Yamaguchi, S, Oosawa, K, Aizawa S-I: Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J Bacteriol 1994;176:5439–5449.
  23. Homma, M, DeRosier, DJ, Macnab, RM: Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J Mol Biol 1990a; 213:819–832.
  24. Homma, M, Fujita, H, Yamaguchi, S, Iino, T: Excretion of unassembled flagellin by Salmonella typhimurium mutant deficient hook-associated proteins. J Bacteriol 1984;159:1056–1059.
  25. Homma, M, Iino, T: Location of hook-associated proteins in flagellar structures of Salmonella typhimurium. J Bacteriol 1985;162:183–189.
  26. Homma, M, Komeda, Y, Iino, T, Macnab, RM: The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide for export. J Bacteriol 1987;169:1493–1498.
  27. Homma, M, Kutsukake, K, Hasebe, M, Iino, T, Macnab, RM: FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J Mol Biol 1990b; 211:465–477.
  28. Hueck, CJ: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998;62:379–433.
  29. Hughes, KT, Gillen, KL, Semon, MJ, Karlinsey, JE: Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 1993;262:1277–1280.
  30. Iino, T: Polarity of flagellar growth in Salmonella. J Gen Microbiol 1969;56:227–239.
  31. Ikeda, T, Asakura, S, Kamiya, R: ‘Cap’ on the tip of Salmonella flagella. J Mol Biol 1985;184:735–737.
  32. Ikeda, T, Homma, M, Iino, T, Asakura, S, Kamiya, R: Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella. J Bacteriol 1987;169:1168–1173.
  33. Ikeda, T, Oosawa, K, Hotani, H: Self-assembly of the filament capping protein, FliD, of bacterial flagella into an annular structure. J Mol Biol 1996;259:679–686.
  34. Imada, K, Vonderviszt, F, Furukawa, Y, Oosawa, K, Namba, K: Assembly characteristics of flagellar cap protein HAP2 of Salmonella: Decamer and pentamer in the pH-sensitive equilibrium. J Mol Biol 1998;277:883–891.
  35. Iyoda, S, Kutsukake, K: Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium. Mol Gen Genet 1995;249:417–424.
  36. Jones, CJ, Homma, M, Macnab, RM: Identification of proteins of the outer (L and P) rings of the flagellar basal body of Escherichia coli. J Bacteriol 1987;169:1489–1492.
  37. Jones, CJ, Macnab, RM, Okino, H, Aizawa, S-I: Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol 1990;212:377–387.
  38. Katayama, E, Shiraishi, T, Oosawa, K, Baba, N, Aizawa, S-I: Geometry of the flagellar motor in the cytoplasmic membrane of Salmonella typhimurium as determined by stereo-photogrammetry of quick-freeze deep-etch replica images. J Mol Biol 1996;255:458–475.
  39. Karlinsey, JE, Lonner, J, Brown, KL, Hughes, KT: Translation/secretion coupling by type III secretion systems. Cell 2000;102:487–497.
  40. Kawagishi, I, Homma, M, Williams, AW, Macnab, RM: Characterization of the flagellar hook length control protein FliK of Salmonella typhimurium and Escherichia coli. J Bacteriol 1996;178:2954–2959.
  41. Kawagishi, I, Müller, V, Williams, AW, Macnab, RM: Subdivision of the flagellar region III of Escherichia coli and Salmonella typhimurium chromosome and identification of two additional flagellar genes. J Gen Microbiol 1992;138:1051–1065.
  42. Kihara, M, Minamino, T, Yamaguchi, S, Macnab, RM: Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus. J Bacteriol 2001;183:1655–1662.
  43. Kornacker, MG, Newton, A: Information essential for cell-cycle-dependent secretion of the 591-residue Caulobacter hook protein is confined to a 21-amino-acid sequence near the N-terminus. Mol Microbiol 1994;14:73–85.
  44. Koroyasu, S, Yamazato, M, Hirano, T, Aizawa, S-I: Kinetic analysis of the growth rate of the flagellar hook in Salmonella typhimurium by the population balance method. Biophys J 1998;74:436–443.
  45. Kubori, T, Matsushima, Y, Nakamura, D, Uralil, J, Lara-Tejero, M, Sukhan, A, Galán, JE, Aizawa, S-I: Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 1998;280:602–605.
  46. Kubori. T, Shimamoto, N, Yamaguchi, S, Namba, K, Aizawa, S-I: Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol 1992;226:433–446.
  47. Kubori, T, Sukhan, A, Aizawa, S-I, Galán, JE: Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA 2000;97:10225–10230.
  48. Kutsukake, K: Excretion of the anti-sigma factor through a flagellar structure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol Gen Genet 1994;243:605–612.
  49. Kutsukake, K, Ikebe, T, Yamamoto, S: Two novel regulatory genes, fliT and fliZ, in the flagellar regulon of Salmonella. Genes Genet Syst 1999;74:287–292.
  50. Kutsukake, K, Minamino, T, Yokoseki, T: Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J Bacteriol 1994a; 176:7625–7629.
  51. Kutsukake, K, Okada, T, Yokoseki, T, Iino, T: Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN. Gene 1994b; 143:49–54.
  52. Kuwajima, G, Kawagishi, I, Homma, M, Asaka, J, Kondo, E, Macnab, RM: Export of an N-terminal fragment of Escherichia coli flagellin by a flagellum-specific pathway. Proc Natl Acad Sci USA 1989;86:4953–4957.
  53. Macnab, RM: 1996. Flagella and motility; in Neidhardt, FC, Curtiss III, R, Ingraham, JL, Lin, ECC, Low, KB, Magasanik, B, Reznikoff, WS, Riley, M, Schaechter, M, Umbarger, H (eds): Escherichia coli and Salmonella: Cellular and Molecular Biology, ed 2. Washington, ASM Press, pp 123–145.
  54. Maki, S, Vonderviszt, F, Furukawa, Y, Imada, K, Namba, K: Plugging interactions of HAP2 pentamer into the distal end of flagellar filament revealed by electron microscopy. J Mol Biol 1998;277:771–777.
  55. Maki-Yonekura, S, Yonekura, K, Namba, K: Domain movements of HAP2 in the cap-filament complex formation and growth process of the bacterial flagellum. Proc Natl Acad Sci USA 2003;100:15528–15533.
  56. Makishima, S, Komoriya, K, Yamaguchi, S, Aizawa, S-I: Length of the flagellar hook and the capacity of the type III export apparatus. Science 2001;291:2411–2413.
  57. Mimori, Y, Yamashita, I, Murata, K, Fujiyoshi, Y, Yonekura, K, Toyoshima, C, Namba, K: The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J Mol Biol 1995;249:69–87.
  58. Mimori-Kiyosue, Y, Vonderviszt, F, Namba, K: Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J Mol Biol 1997;270:222–237.
  59. Mimori-Kiyosue, Y, Vonderviszt, F, Yamashita, I, Fujiyoshi, Y, Namba, K: Direct interactions of flagellin termini essential for polymorphic ability of flagellar filament. Proc Natl Acad Sci USA 1996, 93:15108–15113.
  60. Mimori-Kiyosue, Y, Yamashita, I, Fujiyoshi, Y, Yamaguchi, S, Namba, K: Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy. J Mol Biol 1998;284:521–530.
  61. Minamino, T, Chu, R, Yamaguchi, S, Macnab, R.M: Role of FliJ in flagellar protein export in Salmonella. J Bacteriol 2000a; 182:4207–4215.
  62. Minamino, T, Doi, H, Kutsukake, K: Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium. Biosci Biotechnol Biochem 1999a, 63:1301–1303.
  63. Minamino, T, González-Pedrajo, B, Kihara, M, Namba, K, Macnab, RM: The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol 2003;185:3983–3988.
  64. Minamino, T, González-Pedrajo, B, Oosawa, K, Namba, K, Macnab, RM: Structural properties of FliH, an ATPase regulatory component of the Salmonella type III flagellar export apparatus. J Mol Biol 2003;322:281–290.
  65. Minamino, T, González-Pedrajo, B, Yamaguchi, K, Aizawa, S, Macnab, R.M: FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol 1999b, 34:295–304.
  66. Minamino, T, Iino, T, Kutsukake, K: Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J Bacteriol 1994;176:7630–7637.
  67. Minamino, T, Macnab, RM: Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 1999;181:1388–1394.
  68. Minamino, T, Macnab, RM: Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol 2000a; 182:4906–4919.
  69. Minamino, T, Macnab, RM: FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol 2000b;37:1494–1503.
  70. Minamino, T, Macnab, RM: Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol 2000c; 35:1052–1064.
  71. Minamino, T, Tame, JRH, Namba, K, Macnab, RM: Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella. J Mol Biol 2001;312:1027–1036.
  72. Minamino, T, Yamaguchi, S, Macnab, RM: Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella. J Bacteriol 2000b;182:3029–3036.
  73. Morgan, DG, Macnab, RM, Francis, NR, DeRosier, DJ: Domain organization of the subunit of the Salmonella typhimurium flagellar hook. J Mol Biol 1993;229:79–84.
  74. Morgan, DG, Owen, C, Melanson, L A, DeRosier, DJ: Structure of bacterial flagellar filaments at 11 Å resolution; packing of the α-helices. J Mol Biol 1995:249:88–110.
  75. Müller, V, Jones, CJ, Kawagishi, I, Aizawa, S-I, Macnab RM: Characterization of the fliE gene of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. J Bacteriol 1992;174:2298–2304.
  76. Namba, K, Yamashita, I, Vonderviszt, F: Structure of the core and central channel of bacterial flagella. Nature 1989;342:648–654.
  77. Nambu, T, Kutsukake, K: The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation. Microbiology 2000;146:1171–1178.
  78. Nambu, T, Minamino, T, Macnab, RM, Kutsukake, K: Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 1999;181:1555–1561.
  79. Ohnishi, K, Fan, F, Schoenhals, GJ, Kihara, M, Macnab, RM: The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: Putative components for flagellar assembly. J Bacteriol 1997;179:6092–6099.
  80. Ohnishi, K, Ohto, Y, Aizawa, S-I, Macnab, RM, Iino, T: FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol 1994;176:2272–2281.
  81. Samatey, FA, Imada, K, Nagashima, S, Vonderviszt, F, Kumasaka, T, Yamamoto, M, Namba, K: Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 2001;410:331–337.
  82. Suzuki, H, Yonekura, K, Namba, K: Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol 2004;337:105–113.
  83. Suzuki, T, Iino, T, Horiguchi, T, Yamaguchi, S: Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium. J Bacteriol 1978;133:904–915.
  84. Vogler, AP, Homma, M, Irikura, VM, Macnab, RM: Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J Bacteriol 1991;173:3564–3572.
  85. Vonderviszt, F, Aizawa, S-I, Namba, K: Role of the disordered terminal regions of flagellin in filament formation and stability. J Mol Biol 1991;221:1461–1474.
  86. Vonderviszt, F, Imada, K, Furukawa, Y, Uedaira, H, Taniguchi, H, Namba, K: Mechanism of self-association and filament capping by flagellar HAP2. J Mol Biol 1998;284:1399–1416.
  87. Williams, AW, Yamaguchi, S, Togashi, F, Aizawa, S-I, Kawagishi, I, Macnab, RM: Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J Bacteriol 1996;178:2960–2970.
  88. Yamashita, I, Hasegawa, K, Suzuki, H, Vonderviszt, F, Mimori-Kiyosue, Y, Namba, K: Structure and switching of bacterial flagellar filament studied by X-ray fiber diffraction. Nature Struct Biol 1998;5:125–132.
  89. Yokoseki, T, Kutsukake, K, Ohnishi, K, Iino, T: Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 1995;141:1715–1722.
  90. Yokoseki, T, Iino, T, Kutsukake, K: Negative regulation by FliD, FliS, and FliT of the export of the flagellum-specific anti-sigma factor, FlgM, in Salmonella typhimurium. J Bacteriol 1996;178:899–901.
  91. Yonekura, K, Maki, S, Morgan, DG, DeRosier, DJ, Vonderviszt, F, Imada, K, Namba, K: The bacterial flagellar cap as the rotary promotor of flagellin self-assembly. Science 2000;290:2148–2152.
  92. Yonekura, K, Maki-Yonekura, S, Namba, K: Structure analysis of the flagellar cap-filament complex by electron cryomicroscopy and single particle image analysis. J Struct Biol 2001;133:246–253.
  93. Yonekura, K, Maki-Yonekura, S, Namba, K: Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 2003;424:643–650.
  94. Yoshioka, K, Aizawa, S-I, Yamaguchi, S: Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. J Bacteriol 1995;177:1090–1093.
  95. Zhou, J, Lloyd, SA, and Blair, DF: Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 1998;95:6436–6441.
  96. Zhu, K, González-Pedrajo, B, Macnab, RM: Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. Biochemistry 2002;41:9516–9524.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50