Journal Mobile Options
Table of Contents
Vol. 110, No. 1-4, 2005
Issue release date: 2005

LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model

Vitte C. · Panaud O.
To view the fulltext, log in and/or choose pay-per-view option

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.    



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Ahn S, Tanksley SD: Comparative linkage maps of the rice and the maize genomes. Proc Natl Acad Sci USA 92:7980–7984 (1993).
  2. Ananiev EV, Phillips RL, Rines HW: Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078 (1998).
  3. Arabidopsis Genome Initiative (AGI): Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815 (2000).
  4. Araujo PG, Casacuberta JM, Costa AP, Hashimoto RY, Grandbastien MA, Van Sluys MA: Retrolyc1 subfamilies defined by different U3 LTR regulatory regions in the Lycopersicon genus. Mol Genet Genomics 266:35–41 (2001).
  5. Balint-Kurti PJ, Clendennen SK, Dolezelova M, Valarik M, Dolezel J, Beetham PR, May GD: Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol Gen Genet 263:908–915 (2000).
  6. Barakat A, Matassi G, Bernardi G: Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants. Proc Natl Acad Sci USA 95:10044–10049 (1998).
  7. Bennetzen JL, Kellogg EA: Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514 (1997).
  8. Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z: Grass genomes. Proc Natl Acad Sci USA 95:1975–1978 (1998).
  9. Bhattacharyya MK, Gonzales RA, Kraft M, Buzzell RI: A copia-like retrotransposon Tgmr closely linked to the Rps1-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Mol Biol 34:255–264 (1997).
  10. Blume B, Barry CS, Hamilton AJ, Bouzayen M, Grierson D: Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol Gen Genet 254:297–303 (1997).
  11. Brunner S, Keller B, Feuillet C: A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics 164:673–683 (2003).
  12. Camirand A, Brisson N: The complete nucleotide sequence of the Tst1 retrotransposon of potato. Nucleic Acids Res 18:4929 (1990).
  13. Chavanne F, Zhang DX, Liaud MF, Cerff R: Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375 (1998).
  14. Chen M, Bennetzen JL: Sequence composition and organization in the Sh2/A1-homologous region of rice. Plant Mol Biol 32:999–1001 (1996).
  15. Chen M, SanMiguel P, de Oliveira AC, Woo SS, Zhang H, Wing RA, and Bennetzen JL: Microcolinearity in sh2-homologous regions of the maize, rice and sorghum genomes. Proc Natl Acad Sci USA 94:3431–3435 (1997).
  16. Chen M, SanMiguel P, Bennetzen JL: Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148:435–443 (1998).
  17. Clark LG, Zhang W, Wendel JF: A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20: 436–460 (1995).

    External Resources

  18. Costa AP, Scortecci KC, Hashimoto RY, Araujo PG, Grandbastien MA, Van Sluys MA: Retrolycl-1, a member of the tntl retrotransposon super-family in the Lycopersicon peruvianum genome. Genetica 107:65–72 (1999).
  19. Crepet WL, Feldman GD: The earliest remains of grasses in the fossil record. J Botany 78:1010–1014 (1991).

    External Resources

  20. Curtis CA, Lukaszewski AJ: Genetic linkage between C-bands and storage protein genes in chromosome 1B of tetraploid wheat. Theor Appl Genet 81:245–252 (1991).

    External Resources

  21. Devos K, Brown JK, Bennetzen JL: Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079 (2002).
  22. Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL: Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353 (2001).
  23. Ellis TH, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ: Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19 (1998).
  24. Erdmann PM, Lee RK, Bassett MJ, McClean PE: A molecular marker tightly linked to P, a gene required for flower and seedcoat color in common bean (Phaseolus vulgaris L.), contains the Ty3-gypsy retrotransposon Tpv3g. Genome 45:728–736 (2002).
  25. Faris JD, Haen KM, Gill BS: Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835 (2000).
  26. Feuillet C, Keller B: High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265–8270 (1999).
  27. Fishman-Lobell J, Rudin N, Haber JE: Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12:1292–1303 (1992).
  28. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A: Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644 (1992a).
  29. Flavell AJ, Smith DB, Kumar A: Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231:233–242 (1992b).
  30. Flavell RB, Bennett MD, Smith JB, Smith DB: Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269 (1974).
  31. Foster-Hartnett D, Mudge J, Larsen D, Danesh D, Yan H, Denny R, Penuela S, Young ND: Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G. Genome 45:634–645 (2002).
  32. Francki MG: Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44: 266–274 (2001).
  33. Fu H, Dooner HK: Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578 (2002).
  34. Fu H, Park W, Yan X, Zheng Z, Shen B, Dooner HK: The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci USA 98:8903–8908 (2001).
  35. Garber K, Bilic I, Pusch O, Tohme J, Bachmair A, Schweizer D, Jantsch V: The Tpv2 family of retrotransposons of Phaseolus vulgaris: structure integration characteristics and use for genotype classification. Plant Mol Biol 39:797–807 (1999).
  36. Gaut BS, Morton BR, McCaig BC, Clegg MT: Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279 (1996).
  37. Georgi LL, Wang Y, Reighard GL, Mao L, Wing RA, Abbott AG: Comparison of peach and Arabidopsis genomic sequences: fragmentary conservation of gene neighborhoods. Genome 46:268–276 (2003).
  38. Gill BS, Friebe B, Endo TR: Standard karyotype and nomenclature system for description of chromosome bands and structural aberration in wheat (Triticum aestivum). Genome 34:830–839 (1991).

    External Resources

  39. Grandbastien MA: Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187 (1998).
  40. Grandbastien MA, Spielmann A, Caboche M: Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380 (1989).
  41. Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ: Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891 (1999).
  42. Han CG, Frank MJ, Ohtsubo H, Ohtsubo E: New transposable elements identified as insertions in rice transposon Tnr1. Genes Genet Syst 75:69–77 (2000).
  43. Harberd NP, Flavell RB, Thompson RD: Identification of a transposon-like element in a Glu-1 allele of wheat. Mol Gen Genet 209:326–332 (1987).
  44. Henikoff S, Comai L: A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149:307–318 (1998).
  45. Hirochika H: Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528 (1993).
  46. Hirochika H, Fukuchi A, Kikuchi F: Retrotransposon families in rice. Mol Gen Genet 233:209–216 (1992).
  47. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M: Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788 (1996).
  48. Hu W, Das OP, Messing J: Zeon-1, a member of a new maize retrotransposon family. Mol Gen Genet 248:471–480 (1995).
  49. Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA, McCouch SR, Wessler SR: Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305 (2002a).
  50. Jiang N, Jordan IK, Wessler SR: Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol 130:1697–16975 (2002b).
  51. Jin YK, Bennetzen JL: Structure and coding properties of Bs1, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86:6235–6239 (1989).
  52. Johns MA, Mottinger J, Freeling M: A low copy number, copia-like transposon in maize. EMBO J 4:1093–1102 (1985).
  53. Johns MA, Babcock MS, Fuerstenberg SM, Fuerstenberg SI, Freeling M: Bs1: an unusually compact retrotransposon in maize. Plant Mol Biol 12: 633–642 (1989).
  54. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH: Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607 (2000).
  55. Kapitonov VV, Jurka J: Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107:27–37 (1999).
  56. Keller B, Feuillet C: Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251 (2000).
  57. Kentner EK, Arnold ML, Wessler SR: Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana iris species and their use as molecular markers. Genetics 164:685–697 (2003)
  58. Kirik A, Salomon S, Puchta H: Species-specific double-strand break repair and genome evolution in plants. EMBO J 19:5562–5566 (2000).
  59. Konieczny A, Voytas DF, Cummings MP, Ausubel FM: A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127:801–809 (1991).
  60. Ku HM, Vision T, Liu J, Tanksley SD: Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126 (2000).
  61. Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 33:479–532 (1999).
  62. Kumekawa N, Ohtsubo H, Horiuchi T, Ohtsubo E: Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol Gen Genet 260:593–602 (1999).
  63. Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H: A new gypsy-type retrotransposon RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Genet Genomics 265:480–488 (2001).
  64. Kunzel G, Korzun L, Meister A: Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412 (2000).
  65. Kuwahara A, Kato A, Komeda Y: Isolation and characterization of copia-type retrotransposons in Arabidopsis thaliana. Gene 244:127–136 (2000).
  66. Lall IP, Maneesha, Upadhyaya KC: Panzee, a copia-like retrotransposon from the grain legume pigeonpea (Cajanus cajan L.). Mol Genet Genomics 267:271–280 (2002).
  67. Laten HM, Morris RO: SI retrotransposon-1, a long interspersed repetitive DNA element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene 134:153–159 (1993).
  68. Laten HM, Majumdar A, Gaucher EA: SI retrotransposon-1 a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95:6897–6902 (1998).
  69. Le QH, Wright S, Yu Z, Bureau T: Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381 (2000).
  70. Lee D, Ellis THN, Turner L, Hellens RP, Cleary WG: A copia-like element in Pisum demonstrates the uses of disperse sequences in genetic analysis. Plant Mol Biol 15:707–722 (1990).
  71. Li ZY, Chen SY, Zheng XW, Zhu LH: Identification and chromosomal localization of a transcriptionally active retrotransposon of Ty3-gypsy type in rice. Genome 43:404–408 (2000).
  72. Linares C, Serna A, Fominaya A: Chromosomal organization of a sequence related to LTR-like elements of Ty1-copia retrotransposons in Avena species. Genome 42:706–713 (1999).
  73. Linares C, Loarce Y, Serna A, Fominaya A: Isolation and characterization of two novel retrotransposons of the Ty1-copia group in oat genomes. Chromosoma 110:115–123 (2001).
  74. Llaca V, Messing J: Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15:211–220 (1998).
  75. Lucas H, Moore G, Murphy G, Flavell RB: A family of retrotransposons and associated genomic variation in wheat. Mol Biol Evol 9:716–728 (1992).
  76. Manninen I, Schulman AH: BA retrotransposon-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846 (1993).
  77. Mao L, Begum D, Goff SA, Wing RA: Sequence and analysis of the tomato JOINTLESS locus. Plant Physiol 126:1331–1340 (2001).
  78. Marillonnet S, Wessler SR: Extreme structural heterogeneity among the members of a maize retrotransposon family. Genetics 150:1245–1256 (1998).
  79. Marin I, Llorèns C: Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17:1040–1049 (2000).
  80. Martinez-Izquierdo JA, Garcia-Martinez J, Vicient CM: What makes Grande1 retrotransposon different? Genetica 100:15–28 (1997).
  81. Masson P, Surosky R, Kingsbury JA, Fedoroff NV: Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117:117–137 (1987).
  82. Matsuoka Y, Tsunewaki K: Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol Biol Evol 16:208–217 (1999).
  83. Mayer K, Murphy G, Tarchini R, Wambutt R, Volckaert G, Pohl T, Dusterhoft A, Stiekema W, Entian KD, Terryn N, et al: Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana. Genome Res 11:1167–1174 (2001).
  84. McCarthy EM, Liu J, Lizhi G, McDonald JF: Long terminal repeat retrotransposons of Oryza sativa. Genome Biol 3:10 research0053 (2002).

    External Resources

  85. Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien MA: The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J 28:159–168 (2001).
  86. Moore G, Lucas H, Batty N, Flavell R: A family of retrotransposons and associated genomic variation in wheat. Genomics 10:461–468 (1991).
  87. Nakajima R, Noma K, Ohtsubo H, Ohtsubo E: Identification and characterization of two tandem repeat sequences (TrsB and TrsC) and a retrotransposon (RIRE1) as genome-general sequences in rice. Genes Genet Syst 71:373–382 (1996).
  88. Nakamura Y, Kaneko T, Asamizu E, Kato T, Sato S, Tabata S: Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5 Mb regions of the genome. DNA Res 9:63–70 (2002).
  89. Nakatsuka A, Iwami N, Matsumoto S, Itamura H, Yamagishi M: Ty1-copia group retrotransposons in persimmon (Diospyros kaki Thunb.). Genes Genet Syst 77:131–136 (2002).
  90. Nicolas AL, Munz PL, Young CS: A modified single-strand annealing model best explains the joining of DNA double-strand breaks mammalian cells and cell extracts. Nucleic Acids Res 23:1036–1043 (1995).
  91. Noma K, Nakajima R, Ohtsubo H, Ohtsubo E: RIRE1, a retrotransposon from wild rice Oryza australiensis. Genes Genet Syst 72:131–140 (1997).
  92. Ohtsubo H, Kumekawa N, Ohtsubo E: RIRE2, a novel gypsy-type retrotransposon from rice. Genes Genet Syst 74:83–91 (1999).
  93. Panaud O, Vitte C, Hivert J, Muszlak S, Talag J, Brar D, Sarr A: Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis. Mol Gen Genomics 268:113–121 (2002).
  94. Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P: A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062 (1998).
  95. Pearce SR, Harrison G, Li D, Heslop-Harrison J, Kumar A, Flavell AJ: The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315 (1996).
  96. Pearce SR, Harrison G, Heslop-Harrison PJ, Flavell AJ, Kumar A: Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 40:617–625 (1997).
  97. Pearce SR, Knox M, Ellis TH, Flavell AJ, Kumar A: Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907 (2000).
  98. Peleman J, Cottyn B, Van Camp W, Van Montagu M, Inze D: Transient occurrence of extrachromosomal DNA of an Arabidopsis thaliana transposon-like element, Tat1. Proc Natl Acad Sci USA 88:3618–3622 (1991).
  99. Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G: Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29:441–452 (1995).
  100. Pelissier T, Tutois S, Tourmente S, Deragon JM, Picard G: DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97:141–151 (1996).
  101. Pelsy F, Merdinoglu D: Complete sequence of Tvv1, a family of Ty1 copia-like retrotransposons of Vitis vinifera L., reconstituted by chromosome walking. Theor Appl Genet 105:614–621 (2002).
  102. Petrov DA, Hartl DL: High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302 (1998).
  103. Petrov DA, Lozovskaya ER, Hartl DL: High intrinsic rate of DNA loss in Drosophila. Nature 384:346–349 (1996).
  104. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL: Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062 (2000).
  105. Presting GG, Malysheva L, Fuchs J, Schubert I: A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728 (1998).
  106. Purugganan MD, Wessler SR: Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci USA 91:11674–11678 (1994).
  107. Rahman S, Abrahams S, Abbott D, Mukai Y, Samuel M, Morell M, Appels R: A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome 40:465–474 (1997).
  108. Rostoks N, Park YJ, Ramakrishna W, Ma J, Druka A, Shiloff BA, SanMiguel PJ, Jiang Z, Brueggeman R, Sandhu D, et al: Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct Integr Genomics 2:51–59 (2002).
  109. Sandhu D, Gill KS: Gene-containing regions of wheat and the other grass genomes. Plant Physiol 128:803–811 (2002).
  110. Sandhu D, Champoux JA, Bondareva SN, Gill KS: Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1735–1747 (2001).
  111. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, et al: Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768 (1996).
  112. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL: The paleontology of intergene retrotransposons of maize. Nature Genet 20:43–45 (1998).
  113. SanMiguel P, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J: Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct Integr Genomics 2:70–80 (2002).
  114. Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S: Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Res 8:311–318 (2001).
  115. Sentry JW, Smyth DR: An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Mol Gen Genet 215:349–354 (1989).
  116. Shepherd NS, Schwarz-Sommer Z, Blumberg J, Gupta M, Wienand U, Saedler H: Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements. Nature 307:185–187 (1984).
  117. Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P: A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915 (2000).
  118. Siebert R, Puchta H: Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14:1121–1131 (2002).
  119. Smyth DR, Kalitsis P, Joseph JL, Sentry JW: Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86:5015–5019 (1989).
  120. Stergiou G, Katsiotis A, Hagidimitriou M, Loukas M: Genomic and chromosomal organization of Ty1-copia-like sequences in Olea europaea and evolutionary relationships of Olea retroelements. Theor Appl Genet 104:926–933 (2002).
  121. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H: Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746 (2002).
  122. Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A: The complete sequence of 340 kb of DNA around the rice ADH1-ADH2 regions reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391 (2000).
  123. Terol J, Castillo MC, Bargues M, Perez-Alonso M, de Frutos R: Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome. Mol Biol Evol 18:882–892 (2001).
  124. Thomson KG, Thomas JE, Dietzgen RG: Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. Plant Mol Biol 38:461–465 (1998).
  125. Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein ND, Bennetzen JL, Avramova Z: Colinearity and its exceptions in orthologous ADH regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414 (1999).
  126. Turcich MP, Mascarenhas JP: Pretrotransposon M-1, a putative maize retroelement has LTR (long terminal repeat) sequences that are preferentially transcribed in pollen. Sexual Plant Reprod 7:2–11 (1994).
  127. Turcich MP, Bokhari-Riza A, Hamilton DA, He C, Messier W, Stewart CB, Mascarenhas JP: Pretrotransposon M-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sexual Plant Reprod 9:65–74 (1996).

    External Resources

  128. van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P: Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718 (2003).
  129. VanderWiel PL, Voytas DF, Wendel JF: Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36:429–447 (1993).
  130. Varagona MJ, Purugganan M, Wessler SR: Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4:811–820 (1992).
  131. Verriès C, Bes C, This P, Tesniere C: Cloning and characterization of Vine-1, an LTR-retrotransposon-like element in Vitis vinifera L and other Vitis species. Genome 43:366–376 (2000).
  132. Vershinin AV, Ellis TH: Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Mol Gen Genet 262:703–713 (1999).
  133. Vershinin AV, Allnutt TR, Know MK, Amborse MJ, Ellis THN: Transposable elements reveal the impact of introgression rather than transposition in Pisum diversity, evolution and domestication. Mol Biol Evol 20:2067–2075 (2003).
  134. Vicient CM, Martinez-Izquierdo JA: Discovery of a Zdel transposable element in Zea species as a consequence of a retrotransposon insertion. Gene 184:257–261 (1997).
  135. Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH: Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784 (1999).
  136. Vicient CM, Kalendar R, Schulman AH: Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res 11:2041–2049 (2001).
  137. Vignols F, Rigau J, Torres M, Capellades M, Puigdomenech P: The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416 (1995).
  138. Vitte C, Panaud O: Formation of Solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540 (2003).
  139. Voytas DF, Ausubel FM: A copia-like transposable element family in Arabidopsis thaliana. Nature 336:242–244 (1988).
  140. Wang S, Zhang Q, Maughan PJ, Saghai Maroof MA: Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations. Plant Mol Biol 33:1051–1058 (1997).
  141. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W: Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694 (1997).
  142. Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing RA, Leister D, Schulze-Lefert P, Wise RP: The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948 (1999).
  143. Wei F, Wing RA, Wise RP: Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14:1903–1917 (2002).
  144. Wessler SR: Turned on by stress. Plant retrotransposons. Curr Biol 6:959–961 (1996).
  145. Wessler SR, Tarpley A, Purugganan M, Spell M, Okagaki R: Filler DNA is associated with spontaneous deletions in maize. Proc Natl Acad Sci USA 87:8731–8735 (1990).
  146. White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796 (1994).
  147. Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B: Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316 (2001).
  148. Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B: Rapid genome divergence at orthologous low molecular weight Glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197 (2003).
  149. Witte CP, Le QH, Bureau T, Kumar A: Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783 (2001).
  150. Wright DA, Voytas DF: Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149:703–715 (1998).
  151. Wright DA, Voytas DF: Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogeneous retroviruses. Genome Res 12: 122–131 (2001).
  152. Young ND, Mudge J, Ellis TH: Legume genomes: more than peas in a pod. Curr Opin Plant Biol 6:199–204 (2003).


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50