Journal Mobile Options
Table of Contents
Vol. 110, No. 1-4, 2005
Issue release date: 2005
Cytogenet Genome Res 110:475–490 (2005)
(DOI:10.1159/000084981)

SINEs and LINEs: symbionts of eukaryotic genomes with a common tail

Ohshima K. · Okada N.
School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama (Japan)

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3′ end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.   



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Adams DS, Eickbush TH, Herrera RJ, Lizardi PM: A highly reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Bombyx mori. J Mol Biol 187:465–478 (1986).
  2. Arkhipova IR, Morrison HG: Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci USA 98:14497–14502 (2001).
  3. Batistoni R, Pesole G, Marracci S, Nardi I: A tandemly repeated DNA family originated from SINE-related elements in the European plethodontid salamanders (Amphibia, Urodela). J Mol Evol 40:608–615 (1995).
  4. Betran E, Wang W, Jin L, Long M: Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol Biol Evol 19:654–663 (2002).
  5. Bibiłło A, Eickbush TH: The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J Mol Biol 316:459–473 (2002).
  6. Boissinot S, Furano AV: Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18:2186–2194 (2001).
  7. Borodulina OR, Kramerov DA: Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett 457:409–413 (1999).
  8. Borodulina OR, Kramerov DA: Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm Genome 12:779–786 (2001).
  9. Brosius J: RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238:115–134 (1999a).
  10. Brosius J: Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica 107:209–238 (1999b).
  11. Brosius J: The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118:99–116 (2003).
  12. Bryden LJ, Denovan-Wright EM, Wright JM: ROn-1 SINEs: a tRNA-derived, short interspersed repetitive DNA element from Oreochromis niloticus and its species-specific distribution in Old World cichlid fishes. Mol Mar Biol Biotechnol 7:48–54 (1998).
  13. Bucci S, Ragghianti M, Mancino G, Petroni G, Guerrini F, Giampaoli S: Rana/Pol III: a family of SINE-like sequences in the genomes of western Palearctic water frogs. Genome 42:504–511 (1999).
  14. Burch JBE, Davis DL, Haas NB: Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. Proc Natl Acad Sci USA 90:8199–8203 (1993).
  15. Burke WD, Malik HS, Rich SM, Eickbush TH: Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol Biol Evol 19:619–630 (2002).
  16. Buzdin A, Ustyugova S, Gogvadze E, Vinogradova T, Lebedev Y, Sverdlov E: A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3′ terminus of L1. Genomics 80:402–406 (2002).
  17. Buzdin A, Gogvadze E, Kovalskaya E, Volchkov P, Ustyugova S, Illarionova A, Fushan A, Vinogradova T, Sverdlov E: The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res 31:4385–4390 (2003).
  18. Cheng J-F, Printz R, Callaghan T, Shuey D, Hardison RC: The rabbit C family of interspersed repeats: nucleotide sequence determination and transcriptional analysis. J Mol Biol 176:1–20 (1984).
  19. Chu WM, Ballard R, Carpick BW, Williams BR, Schmid CW: Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol 18:58–68 (1998).
  20. Coltman DW, Wright JM: Can SINEs: a family of tRNA-derived retroposons specific to the superfamily Canoidea. Nucleic Acids Res 22:2726–2730 (1994).
  21. Cost GJ, Feng Q, Jacquier A, Boeke JD: Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910 (2002).
  22. Daniels GR, Deininger PL: A second major class of Alu family repeated DNA sequences in a primate genome. Nucleic Acids Res 11:7595–7610 (1983).
  23. Daniels GR, Deininger PL: Repeat sequence families derived from mammalian tRNA genes. Nature 317:819–822 (1985).
  24. Daniels GR, Deininger PL: Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Res 19:1649–1656 (1991).
  25. Daniels GR, Fox GM, Loewensteiner D, Schmid CW, Deininger PL: Species-specific homogeneity of the primate Alu family of repeated DNA sequences. Nucleic Acids Res 11:7579–7593 (1983).
  26. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr: Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658 (2003).
  27. Dellen K, Field J, Wang Z, Loftus B, Samuelson J: LINEs and SINE-like elements of the protist Entamoeba histolytica. Gene 297:229–239 (2002).
  28. Deragon JM, Landry BS, Pelissier T, Tutois S, Tourmente S, Picard G: An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J Mol Evol 39:378–386 (1994).
  29. Dewannieux M, Esnault C, Heidmann T: LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48 (2003).
  30. Eickbush TH, Furano AV: Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12:669–674 (2002).
  31. Endoh H, Okada N: Total DNA transcription in vitro: a procedure to detect highly repetitive and transcribable sequences with tRNA-like structures. Proc Natl Acad Sci USA 83:251–255 (1986).
  32. Endoh H, Nagahashi S, Okada N: Highly repetitive and transcribable sequence in the tortoise genome is probably a retroposon. Eur J Biochem 189:25–31 (1990).
  33. Esnault C, Maestre J, Heidmann T: Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367 (2000).
  34. Feschotte C, Fourrier N, Desmons I, Mouches C: Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 18:74–84 (2001).
  35. Furano AV, Duvernell DD, Boissinot S: L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14 (2004).
  36. Gilbert N, Labuda D: CORE-SINEs: Eukaryotic short interspersed retroposing elements with common sequence motifs. Proc Natl Acad Sci USA 96:2869–2874 (1999).
  37. Gilbert N, Labuda D: Evolutionary inventions and continuity of CORE-SINEs in mammals. J Mol Biol 298:365–377 (2000).
  38. Haas NB, Grabowski JM, Sivitz AB, Burch JB: Chicken repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames. Gene 197:305–309 (1997).
  39. Haas NB, Grabowski JM, North J, Moran JV, Kazazian HH, Burch JB: Subfamilies of CR1 non-LTR retrotransposons have different 5′UTR sequences but are otherwise conserved. Gene 265:175–183 (2001).
  40. Hamada M, Takasaki N, Reist JD, DeCicco AL, Goto A, Okada N: Detection of the ongoing sorting of ancestrally polymorphic SINEs toward fixation or loss in populations of two species of charr during speciation. Genetics 150:301–311 (1998).
  41. He H, Rovira C, Recco-Pimentel S, Liao C, Edstrom JE: Polymorphic SINEs in chironomids with DNA derived from the R2 insertion site. J Mol Biol 245:34–42 (1995).
  42. Hohjoh H, Singer MF: Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16:6034–6043 (1997).
  43. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409:860–921 (2001).
  44. Iwashita S, Nobukuni T, Tanaka S, Kobayashi M, Iwanaga T, Tamate HB, Masui T, Takahashi I, Hashimoto K: Partial nuclear localization of a bovine phosphoprotein, BCNT, that includes a region derived from a LINE repetitive sequence in Ruminantia. Biochim Biophys Acta 1427:408–416 (1999).
  45. Iwashita S, Osada N, Itoh T, Sezaki M, Oshima K, Hashimoto E, Kitagawa-Arita Y, Takahashi I, Masui T, Hashimoto K, Makalowski W: A transposable element-mediated gene divergence that directly produces a novel type bovine Bcnt protein including the endonuclease domain of RTE-1. Mol Biol Evol 20:1556–1563 (2003).
  46. Izsvák Z, Ivics Z, Garcia-Estefania D, Fahrenkrug SC, Hackett PB: DANA elements: a family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zebrafish (Danio rerio). Proc Natl Acad Sci USA 93:1077–1081 (1996).
  47. Jurka J, Zietkiewicz E, Labuda D: Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era. Nucleic Acids Res 23:170–175 (1995).
  48. Kachroo P, Leong SA, Chattoo BB: Mg-SINE: A short interspersed nuclear element from the rice blast fungus, Magnoporthe grisea. Proc Natl Acad Sci USA 92:11125–11129 (1995).
  49. Kajikawa M, Okada N: LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111:433–444 (2002).
  50. Kajikawa M, Ohshima K, Okada N: Determination of the entire sequence of turtle CR1: The first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif. Mol Biol Evol 14:1206–1217 (1997).
  51. Kajikawa M, Ichiyanagi K, Tanaka N, Okada N: Isolation and characterization of active LINE and SINEs from the eel. Mol Biol Evol 22:673–682 (2005).
  52. Kapitonov VV: CR1-2–DR, an ORF1-less semiautonomous family of CR1-like non-LTR retrotransposons in zebrafish. Repbase Reports 2:(4) p. 7 (2002).
  53. Kapitonov V, Jurka J: The age of Alu subfamilies. J Mol Evol 42:59–65 (1996).
  54. Kapitonov V, Jurka J: ATLINE1–4, a non-LTR retrotransposon. Repbase Reports 1:(3) p. 33 (2001a).
  55. Kapitonov V, Jurka J: ATLINE1–5, a non-LTR retrotransposon. Repbase Reports 1:(3) p. 34 (2001b).
  56. Kapitonov VV, Jurka J: ATLINE1–6, a family of non-LTR retrotransposons. Repbase Reports 1:(4) p. 15 (2001c).
  57. Kapitonov VV, Jurka J: G4–DM, an ancient family of non-LTR retrotransposons from the Jockey clad. Repbase Reports 2:(3) p. 1 (2002a).
  58. Kapitonov VV, Jurka J: G5–DM, an ancient family of non-LTR retrotransposons from the Jockey clad. Repbase Reports 2:(3) p. 2 (2002b).
  59. Kapitonov VV, Jurka J: CR1-1–DR, a family of CR1-like non-LTR retrotransposons in zebrafish. Repbase Reports 2:(4) p. 6 (2002c).
  60. Kapitonov VV, Jurka J: CR1-3–DR, a family of CR1-like non-LTR retrotransposons in zebrafish. Repbase Reports 2:(4) p. 8 (2002d).
  61. Kapitonov VV, Jurka J: L1-1–DR, a non-LTR L1-like retrotransposon from zebrafish. Repbase Reports 2:(4) p. 18 (2002e).
  62. Kapitonov VV, Jurka J: CR1-4–DR, a family of CR1-like non-LTR retrotransposons in zebrafish. Repbase Reports 2:(5) p. 6 (2002f).
  63. Kapitonov VV, Jurka J: REX1-1–DR, a family of CR1-like non-LTR retrotransposons in zebrafish. Repbase Reports 2:(5) p. 29 (2002g).
  64. Kapitonov VV, Jurka J: I-1–DR, a first example of vertebrate non-LTR retrotransposons that belong to the I clade. Repbase Reports 2:(6) p. 18 (2002h).
  65. Kapitonov VV, Jurka J: L1-2–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 2:(7) p. 22 (2002i).
  66. Kapitonov VV, Jurka J: L1-3–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 2:(7) p. 23 (2002j).
  67. Kapitonov VV, Jurka J: L1-4–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 2:(7) p. 24 (2002k).
  68. Kapitonov VV, Jurka J: L1-5–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 2:(7) p. 25 (2002l).
  69. Kapitonov VV, Jurka J: L1-6–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 2:(7) p. 26 (2002m).
  70. Kapitonov VV, Jurka J: L1-8–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 2:(7) p. 28 (2002n).
  71. Kapitonov VV, Jurka J: BS3–DM, a family of Jockey-like non-LTR retrotransposons from D. melanogaster. Repbase Reports 2:(10) p. 1 (2002o).
  72. Kapitonov VV, Jurka J: FW2–DM, a family of Jockey-like non-LTR retrotransposons from D. melanogaster. Repbase Reports 2:(10) p. 5 (2002p).
  73. Kapitonov VV, Jurka J: G5A–DM, a subfamily of non-LTR retrotransposons from the Jockey clade. Repbase Reports 2:(10) p. 7 (2002q).
  74. Kapitonov VV, Jurka J: CR1-1–AG, a family of CR1-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 2:(11) p. 1 (2002r).
  75. Kapitonov VV, Jurka J: CR1-2–AG, a family of CR1-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 2:(11) p. 2 (2002s).
  76. Kapitonov VV, Jurka J: DOC6–DM, a family of Jockey-like non-LTR retrotransposons from D. melanogaster. Repbase Reports 2:(11) p. 3 (2002t).
  77. Kapitonov VV, Jurka J: RTE-1–AG, a family of RTE-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 2:(11) p. 23 (2002u).
  78. Kapitonov VV, Jurka J: The esterase and PHD domains in CR1-like non-LTR retrotransposons. Mol Biol Evol 20:38–46 (2003a).
  79. Kapitonov VV, Jurka J: A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol 20:694–702 (2003b).
  80. Kapitonov VV, Jurka J: L1-10–DR, a family of non-LTR L1-like retrotransposons from zebrafish. Repbase Reports 3:(1) p. 4 (2003c).
  81. Kapitonov VV, Jurka J: CR1-1a–AG, a subfamily of CR1-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 3:(2) p. 13 (2003d).
  82. Kapitonov VV, Jurka J: CR1-3–AG, a family of CR1-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 3:(2) p. 14 (2003e).
  83. Kapitonov VV, Jurka J: CR1-4–AG, a subfamily of CR1-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 3:(2) p. 15 (2003f).
  84. Kapitonov VV, Jurka J: CR1-5–AG, a family of CR1-like non-LTR retrotransposons from African malaria mosquito. Repbase Reports 3:(2) p. 16 (2003g).
  85. Kay RF, Ross C, Williams BA: Anthropoid origins. Science 275:797–804 (1997).
  86. Kazazian HH Jr, Moran JV: The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24 (1998).
  87. Kido Y, Aono M, Yamaki T, Matsumoto K, Murata S, Saneyoshi M, Okada N: Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution. Proc Natl Acad Sci USA 88:2326–2330 (1991).
  88. Kido Y, Himberg M, Takasaki N, Okada N: Amplification of distinct subfamilies of short interspersed elements (SINEs) during evolution of the Salmonidae. J Mol Biol 241:633–644 (1994).
  89. Kim J, Martignetti JA, Shen MR, Brosius J, Deininger P: Rodent BC1 RNA gene as a master gene for ID element amplification. Proc Natl Acad Sci USA 91:3607–3611 (1994).
  90. Kim S, Karsi A, Dunham RA, Liu Z: The skeletal muscle á-actin gene of channel catfish (Ictalurus punctatus) and its association with piscine specific SINE elements. Gene 252:173–181 (2000).
  91. Kimura RH, Choudary PV, Schmid CW: Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res 27:3380–3387 (1999).
  92. Krayev AS, Kramerov DA, Skryabin KG, Ryskov AP, Bayev AA, Georgiev GP: The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids Res 8:1201–1215 (1980).
  93. Krayev AS, Markusheva TV, Kramerov DA, Ryskov, AP, Skryabin, KG, Bayev AA, Georgiev GP: Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res 10:7461–7475 (1982).
  94. Kumar S, Tamura K, Jakobsen IB, Nei M: MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 2001 17:1244–1245 (2001).
  95. Lahn BT, Page DC: Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat Genet 21:429–433 (1999).
  96. Lawrence CB, McDonnell DP, Ramsey WJ: Analysis of repetitive sequence elements containing tRNA- like sequences. Nucleic Acids Res 13:4239–4252 (1985).
  97. Lenoir A, Lavie L, Prieto J-L, Goubely C, Cote J-C, Pelissier T, Deragon J-M: The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol 18:2315–2322 (2001).
  98. Lenstra JA, Boxtel JAF, Zwaagstra KA, Schwerin M: Short interspersed nuclear element (SINE) sequences of the Bovidae. Anim Genet 24:33–39 (1993).
  99. Li T, Spearow J, Rubin CM, Schmid CW: Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239:367–372 (1999).
  100. Lin Z, Nomura O, Hayashi T, Wada Y, Yasue H: Characterization of a SINE species from vicuna and its distribution in animal species including the family Camelidae. Mamm Genome 12:305–308 (2001).
  101. Lorenc A, Makałowski W: Transposable elements and vertebrate protein diversity. Genetica 118:183–191 (2003).
  102. Lovšin N, Gubenšek F, Kordis D: Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Mol Biol Evol 18:2213–2224 (2001).
  103. Luan DD, Eickbush TH: RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol 15:3882–3891 (1995).
  104. Luan DD, Korman MH, Jakubczak JL, Eickbush TH: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 72:595–605 (1993).
  105. Malik HS, Eickbush TH: The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol Biol Evol 15:1123–1134 (1998).
  106. Malik HS, Eickbush TH: NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. Genetics 154:193–203 (2000).
  107. Malik HS, Burke WD, Eickbush TH: The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805 (1999).
  108. Marin I, Plata-Rengifo P, Labrador M, Fontdevila A: Evolutionary relationships among the members of an ancient class of non-LTR retrotransposons found in the nematode Caenorhabditis elegans. Mol Biol Evol 15:1390–1402 (1998).
  109. Martin SL, Bushman FD: Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21:467–475 (2001).
  110. Matsumoto K, Murakami K, Okada N: Gene for lysine tRNA1 may be a progenitor of the highly repetitive and transcribable sequences present in the salmon genome. Proc Natl Acad Sci USA 83:3156–3160 (1986).
  111. Matsumoto T, Takahashi H, Fujiwara H: Targeted nuclear import of open reading frame 1 protein is required for in vivo retrotransposition of a telomere-specific non-long terminal repeat retrotransposon, SART1. Mol Cell Biol 24:105–122 (2004).
  112. Milner RJ, Bloom FE, Lai C, Lerner RA, Sutcliffe JG: Brain-specific genes have identifier sequences in their introns. Proc Natl Acad Sci USA 81:713–717 (1984).
  113. Mochizuki K, Umeda M, Ohtsubo H, Ohtsubo E: Characterization of a plant SINE, p-SINE1, in rice genomes. Jpn J Genet 67:155–166 (1992).
  114. Moran JV, DeBerardinis RJ, Kazazian HH Jr: Exon shuffling by L1 retrotransposition. Science 283:1530–1534 (1999).
  115. Myouga F, Tsuchimoto S, Noma K, Ohtsubo H, Ohtsubo E: Identification and structural analysis of SINE elements in the Arabidopsis thaliana genome. Genes Genet Syst 76:169–179 (2001).
  116. Nagahashi S, Endoh H, Suzuki Y, Okada N: Characterization of a tandemly repeated DNA sequence family originally derived by retroposition of tRNAGlu in the newt. J Mol Biol 222:391–404 (1991).
  117. Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S: Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365:166–170 (1993).
  118. Negishi M, Namba T, Sugimoto Y, Irie A, Katada T, Narumiya S, Ichikawa A: Opposite coupling of prostaglandin E receptor EP3C with Gs and Go. Stimulation of Gs and inhibition of Go. J Biol Chem 268:26067–26070 (1993).
  119. Nikaido M, Okada N: CetSINEs and AREs are not SINEs but are parts of cetartiodactyl L1. Mamm Genome. 11:1123–11236 (2000).
  120. Nikaido M, Nishihara H, Hukumoto Y, Okada N: Ancient SINEs from African endemic mammals. Mol Biol Evol 20:522–527 (2003).
  121. Nishihara H, Terai Y, Okada N: Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol 19:1964–1972 (2002).
  122. Nisson PE, Hickey RJ, Boshar MF, Crain WR Jr: Identification of a repeated sequence in the genome of the sea urchin which is transcribed by RNA polymerase III and contains the features of a retroposon. Nucleic Acids Res 16:1431–1452 (1988).
  123. Nobukuni T, Kobayashi M, Omori A, Ichinose S, Iwanaga T, Takahashi I, Hashimoto K, Hattori S, Kaibuchi K, Miyata Y, Masui T, Iwashita S: An Alu-linked repetitive sequence corresponding to 280 amino acids is expressed in a novel bovine protein, but not in its human homologue. J Biol Chem 272:2801–2807 (1997).
  124. Ogiwara I, Miya M, Ohshima K, Okada N: Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in Elasmobranchs. Mol Biol Evol 16:1238–1250 (1999).
  125. Ogiwara I, Miya M, Ohshima K, Okada N: V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 12:316–324 (2002).
  126. Ohshima K, Okada N: Generality of the tRNA origin of short interspersed repetitive elements (SINEs). Characterization of three different tRNA-derived retroposons in the octopus. J Mol Biol 243:25–37 (1994).
  127. Ohshima K, Koishi R, Matsuo M, Okada N: Several short interspersed repetitive elements (SINEs) in distant species may have originated from a common ancestral retrovirus: Characterization of a squid SINE and a possible mechanism for generation of tRNA-derived retroposons. Proc Natl Acad Sci USA 90:6260–6264 (1993).
  128. Ohshima K, Hamada M, Terai Y, Okada N: The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol Cell Biol 16:3756–3764 (1996).
  129. Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N: Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 4:R74 (2003).

    External Resources

  130. Okada N: SINEs: Short interspersed repeated elements of the eukaryotic genome. Trends Ecol Evol 6:358–361 (1991).
  131. Okada N, Hamada M: The 3′ ends of tRNA-derived SINEs originated from the 3′ ends of LINEs: a new example from the bovine genome. J Mol Evol 44:S52–56 (1997).

    External Resources

  132. Okada N, Ohshima K: Evolution of tRNA-derived SINEs, in Maraia RJ (ed): The Impact of Short Interspersed Elements (SINEs) on the Host Genome, pp 61–79 (RG Landes Company, Austin, 1995).
  133. Okada N, Hamada M, Ogiwara I, Ohshima K: SINEs and LINEs share common 3′ sequences: a review. Gene 205:229–243 (1997).
  134. Pavlicek A, Paces J, Elleder D, Hejnar J: Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res 12:391–399 (2002).
  135. Permanyer J, Gonzàlez-Duarte R, Albalat R: The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes. Genome Biol 4:R73 (2003).

    External Resources

  136. Piskurek O, Nikaido M, Boeadi, Baba M, Okada N: Unique mammalian tRNA-derived repetitive elements in dermopterans: the t-SINE Family and its retrotransposition through multiple sources. Mol Biol Evol 20:1659–1668 (2003).
  137. Poulter R, Butler M, Ormandy J: A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons. Gene 227:169–179 (1999).
  138. Raba M, Limburg K, Burghagen M, Katze JR, Simsek M, Heckman JE, Rajbhandary UL, Gross HJ: Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur J Biochem 97:305–318 (1979).
  139. Rovira C, Edstrom JE: Centromeric polymerase III transcription units in Chironomus pallidivittatus. Nucleic Acids Res 24:1662–1668 (1996).
  140. Sakagami M, Ohshima K, Mukoyama H, Yasue H, Okada N: A novel tRNA species as an origin of short interspersed repetitive elements (SINEs): equine SINEs may have originated from tRNASer. J Mol Biol 239:731–735 (1994).
  141. Sakamoto K, Okada N: Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Mol Evol 22:134–140 (1985).
  142. Sasaki T, Takahashi K, Nikaido M, Miura S, Yasukawa Y, Okada N: First application of the SINE (Short Interspersed Repetitive Element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily testudinoidea. Mol Biol Evol 21:705–715 (2004).
  143. Schmitz J, Zischler H: A novel family of tRNA-derived SINEs in the colugo and two new retrotransposable markers separating dermopterans from primates. Mol Phylogenet Evol 28:341–349 (2003).
  144. Shedlock AM, Okada N: SINE insertions: Powerful tools for molecular systematics. Bioessays 22:148–160 (2000).
  145. Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N: Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670 (1997).
  146. Shimamura M, Nikaido M, Ohshima K, Okada N: A SINE that acquired a role in signal transduction during evolution. Mol Biol Evol 15:923–925 (1998).
  147. Shimamura M, Abe H, Nikaido M, Ohshima K, Okada N: Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNAGlu-derived families of SINEs. Mol Biol Evol 16:1046–1060 (1999).
  148. Shimoda N, Chevrette M, Ekker M, Kikuchi Y, Hotta Y, Okamoto H: Mermaid, a family of short interspersed repetitive elements, is useful for zebrafish genome mapping. Biochem Biophys Res Commun 220:233–237 (1996).
  149. Shoshani J, Groves CP, Simons EL, Gunnell GF: Primate phylogeny: morphological vs. molecular results. Mol Phylogenet Evol 5:102–154 (1996).
  150. Simmen MW, Bird A: Sequence analysis of transposable elements in the sea squirt, Ciona intestinalis. Mol Biol Evol 17:1685–1694 (2000).
  151. Singer DS, Parent LJ, Ehrlich R: Identification and DNA sequence of an interspersed repetitive DNA element in the genome of the miniature swine. Nucleic Acids Res 15:2780 (1987).
  152. Smit AF: The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6:743–748 (1996).
  153. Smit AFA, Riggs AD: MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res 23:98–102 (1995).
  154. Smit AF, Toth G, Riggs AD, Jurka J: Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246:401–417 (1995).
  155. Spotila LD, Hirai H, Rekosh DM, LoVerde PT: A retroposon-like short repetitive DNA element in the genome of the human blood fluke, Schistosoma mansoni. Chromosoma 97:421–428 (1989).
  156. Szafranski K, Dingermann T, Glöckner G, Winckler T: Template jumping by a LINE reverse transcriptase has created a SINE-like 5S rRNA retropseudogene in Dictyostelium. Mol Genet Genomics 271:98–102 (2004).
  157. Takahashi I, Nobukuni T, Ohmori H, Kobayashi M, Tanaka S, Ohshima K, Okada N, Masui T, Hashimoto K, Iwashita S: Existence of a bovine LINE repetitive insert that appears in the cDNA of bovine protein BCNT in ruminant, but not in human, genomes. Gene 211:387–394 (1998).
  158. Takahashi K, Terai Y, Nishida M, Okada N: A novel family of short interspersed repetitive elements (SINEs) from cichlids: the pattern of insertion of SINEs at orthologoous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol Biol Evol 15:391–407 (1998).
  159. Takasaki N, Yamaki T, Hamada M, Park L, Okada N: The salmon SmaI family of short interspersed repetitive elements (SINEs): interspecific and intraspecific variation of the insertion of SINEs in the genomes of chum and pink salmon. Genetics 146:369–380 (1997).
  160. Terai Y, Takahashi K, Okada N: SINE cousins: the 3′ end tails of the two oldest and distantly related families of SINEs are descended from the 3′ ends of LINEs with the same genealogical origin. Mol Biol Evol 15:1460–1471 (1998).
  161. Tu Z: Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 16:760–762 (1999).
  162. Ullu E, Tschudi C: Alu sequences are processed 7SL RNA genes. Nature 312:171–172 (1984).
  163. Vassetzky NS, Ten OA, Kramerov DA: B1 and related SINEs in mammalian genomes. Gene 319:149–160 (2003).
  164. Volff J-N, Körting C, Schartl M: Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17:1673–1684 (2000).
  165. Weiner AM: An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22:209–218 (1980).
  166. Weiner AM: Do all SINEs lead to LINEs? Nat Genet 24:332–333 (2000).
  167. Weiner AM: SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350 (2002).
  168. Weiner AM, Deininger PL, Efstratiadis A: Nonviral retroposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661 (1986).
  169. Winkfein RJ, Moir RD, Krawetz SA, Blanco J, States JC, Dixon GH: A new family of repetitive, retroposon-like sequences in the genome of the rainbow trout. Eur J Biochem 176:255–264 (1988).
  170. Yang C, Teng X, Zurovec M, Scheller K, Sehnal F: Characterization of the P25 silk gene and associated insertion elements in Galleria mellonella. Gene 209:157–165 (1998).
  171. Yoshioka Y, Matsumoto S, Kojima S, Ohshima K, Okada N, Machida Y: Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc Natl Acad Sci USA 90:6562–6566 (1993).
  172. Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713 (1998).


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50