Journal Mobile Options
Table of Contents
Vol. 2, No. 3-4, 2005
Issue release date: January 2006

Excitotoxicity and Amyotrophic Lateral Sclerosis

van Cutsem P. · Dewil M. · Robberecht W. · van den Bosch L.
To view the fulltext, log in and/or choose pay-per-view option

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Since its description by Charcot more than 130 years ago, the pathogenesis of selective motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains unsolved. Over the years, many pathogenic mechanisms have been proposed. Amongst others these include: oxidative stress, excitotoxicity, aggregate formation, inflammation, growth factor deficiency and neurofilament disorganization. This multitude of contributing factors indicates that ALS is a complex disease and also suggests that ALS is a multifactorial disorder. Excitotoxicity is not the newest and most spectacular hypothesis in the ALS field, but it is undoubtedly one of the most robust pathogenic mechanisms supported by an impressive amount of evidence. Moreover, the therapeutic efficacy of riluzole, the only drug proven to slow disease progression in ALS, is most likely related to its anti-excitotoxic properties. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS and of the possible mechanisms leading to motor neuron death. We will also summarize the intrinsic properties of motor neurons that render these cells particularly vulnerable to excitotoxicity and could explain the selective vulnerability of motor neurons in ALS. All this information could help to develop new and better therapeutic strategies that could protect motor neurons from excitotoxicity.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59–62.
  2. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T: The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001;29:160–165.
  3. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001;29:166–173.
  4. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF: DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004;74:1128–1135.
  5. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JR, Gillingwater T, Webb J, Skehel P, Zatz M: A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004;75:822–831.
  6. Bensimon G, Lacomblez L, Meininger V: A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994;330:585–591.

    External Resources

  7. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V: Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996;347:1425–1431.
  8. Cleveland DW, Rothstein JD: From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2001;2:806–819.
  9. Brown RH Jr, Robberecht W: Amyotrophic lateral sclerosis: pathogenesis. Semin Neurol 2001;21:131–139.
  10. Heath PR, Shaw PJ: Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002;26:438–458.
  11. Julien JP: Amyotrophic lateral sclerosis. Unfolding the toxicity of the misfolded. Cell 2001;104:581–591.
  12. Coyle JT, Puttfarcken P: Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993;262:689–695.
  13. Lipton SA, Rosenberg PA: Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994;330:613–622.
  14. Doble A: The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999;81:163–221.
  15. Benveniste H, Drejer J, Schousboe A, Diemer NH: Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984;43:1369–1374.
  16. Kvamme E, Schousboe A, Hertz L, Torgner IA, Svenneby G: Developmental change of endogenous glutamate and γ-glutamyl transferase in cultured cerebral cortical interneurons and cerebellar granule cells, and in mouse cerebral cortex and cerebellum in vivo. Neurochem Res 1985;10:993–1008.
  17. Meldrum B, Garthwaite J: Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990;11:379–387.
  18. Rosenberg PA, Amin S, Leitner M: Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 1992;12:56–61.
  19. Seeburg PH: The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 1993;16:359–365.
  20. Hollmann M, Heinemann S: Cloned glutamate receptors. Annu Rev Neurosci 1994;17:31–108.
  21. Collingridge GL, Lester RA: Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 1989;41:143–210.
  22. Nicoll RA, Malenka RC: Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann NY Acad Sci 1999;868:515–525.
  23. Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S: Cloning by functional expression of a member of the glutamate receptor family. Nature 1989;342:643–648.
  24. Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH: A family of AMPA-selective glutamate receptors. Science 1990;249:556–560.
  25. Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S: Molecular cloning and functional expression of glutamate receptor subunit genes. Science 1990;249:1033–1037.
  26. Nakanishi N, Shneider NA, Axel R: A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 1990;5:569–581.
  27. Rosenmund C, Stern-Bach Y, Stevens CF: The tetrameric structure of a glutamate receptor channel. Science 1998;280:1596–1599.
  28. Hollmann M, Hartley M, Heinemann S: Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 1991;252:851–853.
  29. Hume RI, Dingledine R, Heinemann SF: Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 1991;253:1028–1031.
  30. Burnashev N, Monyer H, Seeburg PH, Sakmann B: Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992;8:189–198.
  31. Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B: Structural determinants of ion flow through recombinant glutamate receptor channels. Science 1991;252:1715–1718.
  32. Sommer B, Kohler M, Sprengel R, Seeburg PH: RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991;67:11–19.
  33. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MV, Connor JA, Zukin RS: Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci 1997;17:6179–6188.
  34. Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y, Grooms SY, Regis R, Bennett MV, Zukin RS: Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 2003;23:2112–2121.
  35. Novelli A, Reilly JA, Lysko PG, Henneberry RC: Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988;451:205–212.
  36. Henneberry RC, Novelli A, Cox JA, Lysko PG: Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons. A hypothesis for cell death in aging and disease. Ann NY Acad Sci 1989;568:225–233.
  37. Choi DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988;1:623–634.
  38. Prehn JH, Lippert K, Krieglstein J: Are NMDA or AMPA/kainate receptor antagonists more efficacious in the delayed treatment of excitotoxic neuronal injury? Eur J Pharmacol 1995;292:179–189.
  39. Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 1987;7:369–379.
  40. Carriedo SG, Yin HZ, Weiss JH: Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 1996;16:4069–4079.
  41. Van Den Bosch L, Vandenberghe W, Klaassen H, Van Houtte E, Robberecht W: Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 2000;180:29–34.
  42. Dykens JA: Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 1994;63:584–591.
  43. Carriedo SG, Sensi SL, Yin HZ, Weiss JH: AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J Neurosci 2000;20:240–250.
  44. Urushitani M, Nakamizo T, Inoue R, Sawada H, Kihara T, Honda K, Akaike A, Shimohama S: N-methyl-D-aspartate receptor-mediated mitochondrial Ca2+ overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca2+ influx. J Neurosci Res 2001;63:377–387.
  45. Spencer PS, Roy DN, Ludolph A, Hugon J, Dwivedi MP, Schaumburg HH: Lathyrism: evidence for role of the neuroexcitatory amino acid BOAA. Lancet 1986;ii:1066–1067.
  46. Bridges RJ, Stevens DR, Kahle JS, Nunn PB, Kadri M, Cotman CW: Structure-function studies on N-oxalyl-diamino-dicarboxylic acids and excitatory amino acid receptors: evidence that β-L-ODAP is a selective non-NMDA agonist. J Neurosci 1989;9:2073–2079.
  47. Hugon J, Ludolph A, Roy DN, Schaumburg HH, Spencer PS: Studies on the etiology and pathogenesis of motor neuron diseases. II. Clinical and electrophysiologic features of pyramidal dysfunction in macaques fed Lathyrus sativus and IDPN. Neurology 1988;38:435–442.
  48. Chase RA, Pearson S, Nunn PB, Lantos PL: Comparative toxicities of α- and β-N-oxalyl-L-α,β-diaminopropionic acids to rat spinal cord. Neurosci Lett 1985;55:89–94.
  49. Kruman II, Pedersen WA, Springer JE, Mattson MP: ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 1999;160:28–39.
  50. Spencer PS, Nunn PB, Hugon J, Ludolph A, Roy DN: Motor neurone disease on Guam: possible role of a food neurotoxin. Lancet 1986;i:965.
  51. Ross SM, Seelig M, Spencer PS: Specific antagonism of excitotoxic action of ‘uncommon’ amino acids assayed in organotypic mouse cortical cultures. Brain Res 1987;425:120–127.
  52. Copani A, Canonico PL, Catania MV, Aronica E, Bruno V, Ratti E, van Amsterdam FT, Gaviraghi G, Nicoletti F: Interaction between β-N-methylamino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res 1991;558:79–86.
  53. Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC: Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987;237:517–522.
  54. Duncan MW, Steele JC, Kopin IJ, Markey SP: 2-Amino-3-(methylamino)propanoic acid in cycad flour: an unlikely cause of amyotrophic lateral sclerosis and parkinsonism- dementia of Guam. Neurology 1990;40:767–772.
  55. Cox PA, Sacks OW: Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 2002;58:956–959.
  56. Malessa S, Leigh PN, Bertel O, Sluga E, Hornykiewicz O: Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. J Neurol Neurosurg Psychiatry 1991;54:984–988.
  57. Tsai GC, Stauch-Slusher B, Sim L, Hedreen JC, Rothstein JD, Kuncl R, Coyle JT: Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res 1991;556:151–156.
  58. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL, Coyle JT: Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990;28:18–25.
  59. Plaitakis A, Constantakakis E, Smith J: The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 1988;24:446–449.
  60. Perry TL, Hansen S, Jones K: Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 1987;37:1845–1848.
  61. Pioro EP, Majors AW, Mitsumoto H, Nelson DR, Ng TC: 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology 1999;53:71–79.
  62. Alexander GM, Deitch JS, Seeburger JL, Del Valle L, Heiman-Patterson TD: Elevated cortical extracellular fluid glutamate in transgenic mice expressing human mutant (G93A) Cu/Zn superoxide dismutase. J Neurochem 2000;74:1666–1673.
  63. Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ: CSF and plasma amino acid levels in motor neuron disease: Elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995;4:209–216.
  64. Perry TL, Krieger C, Hansen S, Eisen A: Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 1990;28:12–17.
  65. Plaitakis A, Caroscio JT: Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987;22:575–579.
  66. Hugon J, Tabaraud F, Rigaud M, Vallat JM, Dumas M: Glutamate dehydrogenase and aspartate aminotransferase in leukocytes of patients with motor neuron disease. Neurology 1989;39:956–958.
  67. Rothstein JD, Kuncl R, Chaudhry V, Clawson L, Cornblath DR, Coyle JT, Drachman DB: Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 1991;30:224–225.
  68. Rothstein JD, Martin LJ, Kuncl RW: Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 1992;326:1464–1468.
  69. Shaw PJ, Chinnery RM, Ince PG: [3H]D-aspartate binding sites in the normal human spinal cord and changes in motor neuron disease: a quantitative autoradiographic study. Brain Res 1994;655:195–201.
  70. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995;38:73–84.
  71. Sasaki S, Komori T, Iwata M: Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 2000;100:138–144.
  72. Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR, Shaw PJ: The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 1998;10:2481–2489.
  73. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996;16:675–686.
  74. Bendotti C, Tortarolo M, Suchak SK, Calvaresi N, Carvelli L, Bastone A, Rizzi M, Rattray M, Mennini T: Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 2001;79:737–746.
  75. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW: ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997;18:327–338.
  76. Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro LJ, Cleveland DW, Rothstein JD: Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2002;99:1604–1609.
  77. Sasaki S, Warita H, Abe K, Komori T, Iwata M: EAAT1 and EAAT2 immunoreactivity in transgenic mice with a G93A mutant SOD1 gene. Neuroreport 2001;12:1359–1362.
  78. Deitch JS, Alexander GM, Del Valle L, Heiman-Patterson TD: GLT-1 glutamate transporter levels are unchanged in mice expressing G93A human mutant SOD1. J Neurol Sci 2002;193:117–126.
  79. Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N, Horne CH, Shaw PJ: Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res Mol Brain Res 1997;52:17–31.
  80. Aoki M, Lin CL, Rothstein JD, Geller BA, Hosler BA, Munsat TL, Horvitz HR, Brown, RH Jr: Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann Neurol 1998;43:645–653.
  81. Trotti D, Aoki M, Pasinelli P, Berger UV, Danbolt NC, Brown RH Jr, Hediger MA: Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 2001;276:576–582.
  82. Jackson M, Steers G, Leigh PN, Morrison KE: Polymorphisms in the glutamate transporter gene EAAT2 in European ALS patients. J Neurol 1999;246:1140–1144.
  83. Meyer T, Munch C, Volkel H, Booms P, Ludolph AC: The EAAT2 (GLT-1) gene in motor neuron disease: absence of mutations in amyotrophic lateral sclerosis and a point mutation in patients with hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 1998;65:594–596.
  84. Bristol LA, Rothstein JD: Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 1996;39:676–679.
  85. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, Rothstein JD: Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998;20:589–602.
  86. Flowers JM, Powell JF, Leigh PN, Andersen P, Shaw CE: Intron 7 retention and exon 9 skipping EAAT2 mRNA variants are not associated with amyotrophic lateral sclerosis. Ann Neurol 2001;49:643–649.
  87. Meyer T, Fromm A, Munch C, Schwalenstocker B, Fray AE, Ince PG, Stamm S, Gron G, Ludolph AC, Shaw PJ: The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 1999;170:45–50.
  88. Trotti D, Rolfs A, Danbolt NC, Brown RH Jr, Hediger MA: SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 1999;2:427–433.
  89. Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA, Lin CL: Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 2003;12:2519–2532.
  90. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB: Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433:73–77.
  91. Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED: Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996;39:147–157.

    External Resources

  92. Mazzini L, Mora G, Balzarini C, Brigatti M, Pirali I, Comazzi F, Pastore E: The natural history and the effects of gabapentin in amyotrophic lateral sclerosis. J Neurol Sci 1998;160(suppl 1):S57–S63.

    External Resources

  93. Miller RG, Moore D, Young LA, Armon C, Barohn RJ, Bromberg MB, Bryan WW, Gelinas DF, Mendoza MC, Neville HE, Parry GJ, Petajan JH, Ravits JM, Ringel SP, Ross MA: Placebo-controlled trial of gabapentin in patients with amyotrophic lateral sclerosis. WALS Study Group. Western Amyotrophic Lateral Sclerosis Study Group. Neurology 1996;47:1383–1388.
  94. Miller RG, Moore DH 2nd, Gelinas DF, Dronsky V, Mendoza M, Barohn RJ, Bryan W, Ravits J, Yuen E, Neville H, Ringel S, Bromberg M, Petajan J, Amato AA, Jackson C, Johnson W, Mandler R, Bosch P, Smith B, Graves M, Ross M, Sorenson EJ, Kelkar P, Parry G, Olney R: Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology 2001;56:843–848.
  95. Eisen A, Stewart H, Schulzer M, Cameron D: Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci 1993;20:297–301.
  96. Cudkowicz ME, Shefner JM, Schoenfeld DA, Brown RH Jr, Johnson H, Qureshi M, Jacobs M, Rothstein JD, Appel SH, Pascuzzi RM, Heiman-Patterson TD, Donofrio PD, David WS, Russell JA, Tandan R, Pioro EP, Felice KJ, Rosenfeld J, Mandler RN, Sachs GM, Bradley WG, Raynor EM, Baquis GD, Belsh JM, Novella S, Goldstein J, Hulihan J: A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 2003;61:456–464.
  97. Gredal O, Werdelin L, Bak S, Christensen PB, Boysen G, Kristensen MO, Jespersen JH, Regeur L, Hinge HH, Jensen TS: A clinical trial of dextromethorphan in amyotrophic lateral sclerosis. Acta Neurol Scand 1997;96:8–13.
  98. Blin O, Azulay JP, Desnuelle C, Bille-Turc F, Braguer D, Besse D, Branger E, Crevat A, Serratrice G, Pouget JY: A controlled one-year trial of dextromethorphan in amyotrophic lateral sclerosis. Clin Neuropharmacol 1996;19:189–192.
  99. Jones T: An assessment of the efficacy and safety of LY300164 in patients with ALS/MND. Abstract ALS/MND 1999.
  100. Hugon J, Vallat JM, Spencer PS, Leboutet MJ, Barthe D: Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord. Neurosci Lett 1989;104:258–262.
  101. Curtis DR, Malik R: A neurophysiological analysis of the effect of kainic acid on nerve fibres and terminals in the cat spinal cord. J Physiol 1985;368:99–108.
  102. Pisharodi M, Nauta HJ: An animal model for neuron-specific spinal cord lesions by the microinjection of N-methylaspartate, kainic acid, and quisqualic acid. Appl Neurophysiol 1985;48:226–233.
  103. Urca G, Urca R: Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-D-aspartate induce permanent neural damage. Brain Res 1990;529:7–15.
  104. Nakamura R, Kamakura K, Kwak S: Late-onset selective neuronal damage in the rat spinal cord induced by continuous intrathecal administration of AMPA. Brain Res 1994;654:279–285.
  105. Ikonomidou C, Qin Qin Y, Labruyere J, Olney JW: Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SOD1 transgenic mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1996;55:211–224.
  106. Saroff D, Delfs J, Kuznetsov D, Geula C: Selective vulnerability of spinal cord motor neurons to non-NMDA toxicity. Neuroreport 2000;11:1117–1121.
  107. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW: Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 1993;90:6591–6595.
  108. Estevez AG, Stutzmann JM, Barbeito L: Protective effect of riluzole on excitatory amino acid-mediated neurotoxicity in motoneuron-enriched cultures. Eur J Pharmacol 1995;280:47–53.
  109. Vandenberghe W, Van Den Bosch L, Robberecht W: Glial cells potentiate kainate-induced neuronal death in a motoneuron-enriched spinal coculture system. Brain Res 1998;807:1–10.
  110. Urushitani M, Shimohama S, Kihara T, Sawada H, Akaike A, Ibi M, Inoue R, Kitamura Y, Taniguchi T, Kimura J: Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: involvement of glutamate-induced nitric oxide in motor neuron toxicity and non-motor neuron protection. Ann Neurol 1998;44:796–807.
  111. Fryer HJ, Knox RJ, Strittmatter SM, Kalb RG: Excitotoxic death of a subset of embryonic rat motor neurons in vitro. J Neurochem 1999;72:500–513.
  112. Van Den Bosch L, Robberecht W: Different receptors mediate motor neuron death induced by short and long exposures to excitotoxicity. Brain Res Bull 2000;53:383–388.
  113. Van Den Bosch L, Van Damme P, Vleminckx V, Van Houtte E, Lemmens G, Missiaen L, Callewaert G, Robberecht W: An α-mercaptoacrylic acid derivative (PD150606) inhibits selective motor neuron death via inhibition of kainate-induced Ca2+ influx and not via calpain inhibition. Neuropharmacology 2002;42:706–713.
  114. Van Damme P, Van Den Bosch L, Robberecht W: Excitotoxicity and oxidative stress in the pathogenesis of ALS/MND. Motor Neuron Disorders (Blue Books of Practical Neurology) 2003; ISBN 0–7506–7442–3:259–284.
  115. Van Damme P, Van Den Bosch L, Van Houtte E, Callewaert G, Robberecht W: GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol 2002;88:1279–1287.
  116. Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, Rozov A, Burnashev N, Jensen V, Hvalby O, Sprengel R, Seeburg PH: Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat Neurosci 1999;2:57–64.
  117. Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J: Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 1996;17:945–956.
  118. Van Damme P, Braeken D, Callewaert G, Robberecht W, Van Den Bosch L: GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J. Neuropathol Exp Neurol 2005;64:605–612.
  119. Tateno M, Sadakata H, Tanaka M, Itohara S, Shin RM, Miura M, Masuda M, Aosaki T, Urushitani M, Misawa H, Takahashi R: Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet 2004;13:2183–2196.
  120. Van Damme P, Callewaert G, Van Den Bosch L, Robberecht W: Differences in GluR2 expression correlate with sensitivity of motor neurons to AMPA receptor-mediated excitotoxicity. Abstract Viewer/Itinary Planner 2003; Program No. 96.3. Washington, Society for Neuroscience, 2003.
  121. Van Damme P, Bockx I, Verhoeven K, Timmerman V, Callewaert G, Robberecht W, Van Den Bosch L: Glial cells modulate GluR2 expression and vulnerability of motoneurons to AMPA receptor-mediated excitotoxicity. Abstract Viewer/Itinary Planner 2004; Program No. 96.11. Washington, Society for Neuroscience, 2004.
  122. Takuma H, Kwak S, Yoshizawa T, Kanazawa I: Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 1999;46:806–815.
  123. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S: Glutamate receptors: RNA editing and death of motor neurons. Nature 2004;427:801.
  124. Van Damme P, Callewaert G, Eggermont J, Robberecht W, Van Den Bosch L: Chloride influx aggravates Ca2+-dependent AMPA receptor-mediated motoneuron death. J Neurosci 2003;23:4942–4950.
  125. Vandenberghe W, Ihle EC, Patneau DK, Robberecht W, Brorson JR: AMPA receptor current density, not desensitization, predicts selective motoneuron vulnerability. J Neurosci 2000;20:7158–7166.
  126. Magoul R, Onteniente B, Geffard M, Calas A: Anatomical distribution and ultrastructural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies. Neuroscience 1987;20:1001–1009.
  127. Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH: The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1994;36:846–858.
  128. Celio MR: Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990;35:375–475.
  129. Ince P, Stout N, Shaw P, Slade J, Hunziker W, Heizmann CW, Baimbridge KG: Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 1993;19:291–299.
  130. Elliott JL, Snider WD: Parvalbumin is a marker of ALS-resistant motor neurons. Neuroreport 1995;6:449–452.
  131. Lips MB, Keller BU: Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse. J Physiol 1998;511:105–117.
  132. Palecek J, Lips MB, Keller BU: Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol 1999;520:485–502.
  133. Vanselow BK, Keller BU: Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis-related motoneurone disease. J Physiol 2000;525:433–445.
  134. Van Den Bosch L, Schwaller B, Vleminckx V, Meijers B, Stork S, Ruehlicke T, Van Houtte E, Klaassen H, Celio MR, Missiaen L, Robberecht W, Berchtold MW: Protective effect of parvalbumin on excitotoxic motor neuron death. Exp Neurol 2002;174:150–161.
  135. Beers DR, Ho BK, Siklos L, Alexianu ME, Mosier DR, Mohamed AH, Otsuka Y, Kozovska ME, McAlhany RE, Smith RG, Appel SH: Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J Neurochem 2001;79:499–509.
  136. Roy J, Minotti, S Dong L, Figlewicz DA, Durham HD: Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J Neurosci 1998;18:9673–9684.
  137. Tomiyama M, Kimura T, Maeda T, Tanaka H, Furusawa K, Kurahashi K, Matsunaga M: Expression of metabotropic glutamate receptor mRNAs in the human spinal cord: implications for selective vulnerability of spinal motor neurons in amyotrophic lateral sclerosis. J Neurol Sci 2001;189:65–69.
  138. Aronica E, Catania MV, Geurts J, Yankaya B, Troost D: Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience 2001;105:509–520.
  139. Laslo P, Lipski J, Funk GD: Differential expression of group I metabotropic glutamate receptors in motoneurons at low and high risk for degeneration in ALS. Neuroreport 2001;12:1903–1908.
  140. Anneser JM, Borasio GD, Berthele A, Zieglgansberger W, Tolle TR: Differential expression of group I metabotropic glutamate receptors in rat spinal cord somatic and autonomic motoneurons: possible implications for the pathogenesis of amyotrophic lateral sclerosis. Neurobiol Dis 1999;6:140–147.
  141. Pizzi M, Benarese M, Boroni F, Goffi F, Valerio A, Spano PF: Neuroprotection by metabotropic glutamate receptor agonists on kainate-induced degeneration of motor neurons in spinal cord slices from adult rat. Neuropharmacology 2000;39:903–910.
  142. Anneser JM, Horstmann S, Weydt P, Borasio GD: Activation of metabotropic glutamate receptors delays apoptosis of chick embryonic motor neurons in vitro. Neuroreport 1998;9:2039–2043.
  143. Canton T, Bohme GA, Boireau A, Bordier F, Mignani S, Jimonet P, Jahn G, Alavijeh M, Stygall J, Roberts S, Brealey C, Vuilhorgne M, Debono MW, Le Guern S, Laville M, Briet D, Roux M, Stutzmann JM, Pratt J: RPR 119990, a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid antagonist: synthesis, pharmacological properties, and activity in an animal model of amyotrophic lateral sclerosis. J Pharmacol Exp Ther 2001;299:314–322.
  144. Ghadge GD, Slusher BS, Bodner A, Canto MD, Wozniak K, Thomas AG, Rojas C, Tsukamoto T, Majer P, Miller RJ, Monti AL, Roos RP: Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proc Natl Acad Sci USA 2003;100:9554–9559.
  145. Durham HD, Roy J, Dong L, Figlewicz DA: Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 1997;56:523–530.
  146. Van Den Bosch L, Storkebaum E, Vleminckx V, Moons L, Vanopdenbosch L, Scheveneels W, Carmeliet P, Robberecht W: Effects of vascular endothelial growth factor on motor neuron degeneration. Neurobiol Dis 2004;17:21–28.
  147. Raoul C, Estevez AG, Nishimune H, Cleveland DW, deLapeyriere O, Henderson CE, Haase G, Pettmann B: Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 2002;35:1067–1083.
  148. Grosskreutz J, Van Damme P, Callewaert G, Robberecht W, Dengler R, Bufler J, Van Den Bosch L: Mitochondrial buffering of AMPA-receptor mediated calcium influx in spinal motor neurons: focus of selective vulnerability towards excitotoxic insults? Amyotroph Lateral Scler Other Motor Neuron Disord 2003;4(suppl 1):68–69.
  149. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003;302:113–117.
  150. Tikka TM, Vartiainen NE, Goldsteins G, Oja SS, Andersen PM, Marklund SL, Koistinaho J: Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 2002;125:722–731.
  151. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J: Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001;21:2580–2588.
  152. Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W: Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport 2002;13:1067–1070.
  153. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu du C, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM: Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002;417:74–78.
  154. Kriz J, Nguyen MD, Julien JP: Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2002;10:268–278.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50