Journal Mobile Options
Table of Contents
Vol. 10, No. 2-4, 2005
Issue release date: April 2006
J Mol Microbiol Biotechnol 2005;10:208–222

A Possible Role for Iron-Sulfur Cluster N2 in Proton Translocation by the NADH:Ubiquinone Oxidoreductase (Complex I)

Flemming D. · Stolpe S. · Schneider D. · Hellwig P. · Friedrich T.
aInstitut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, and bInstitut für Biophysik, Johann-Wolfgang-Goethe-Universität, Frankfurt am Main, Germany

Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in


The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The enzyme mechanism is still unknown due to the lack of a high-resolution structure and its complicated composition. The complex from Escherichia coli is made up of 13 subunits called NuoA through NuoN and contains one FMN and nine iron-sulfur (Fe/S) clusters as redox groups. The pH dependence of the midpoint redox potential of the Fe/S cluster named N2 and its spin-spin interaction with ubiquinone radicals made it an ideal candidate for a key component in redox-driven proton translocation. During the past years we have assigned the subunit localization of cluster N2 to subunit NuoB by site-directed mutagenesis and predicted its ligation by molecular simulation. Redox-induced FT-IR spectroscopy has shown that its redox reaction is accompanied by the protonation and deprotonation of individual amino acid residues. These residues have been identified by site-directed mutagenesis. The enzyme catalytic activity depends on the presence of cluster N2 and is coupled with major conformational changes. From these data a model for redox-induced conformation-driven proton translocation has been derived.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.


  1. Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schagger H, Kerscher S, Brandt U: Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim Biophys Acta 2004;1658:148–156.
  2. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S: Structure and mechanism of the lactose permease of Escherichia coli. Science 2003;301:610–615.
  3. Ahlers PM, Zwicker K, Kerscher S, Brandt U: Function of conserved acidic residues in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 2000;275:23577–23582.
  4. Albracht SPJ: Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH:ubiquinone oxidoreductase. Biochim Biophys Acta 1993;1144:221–224.
  5. Albracht SPJ, de Jong MAP: Bovine-heart NADH:ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. Biochim Biophys Acta 1997;1318:92–106.
  6. Albracht SPJ, Hedderich R: Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 2000;485:1–6.
  7. Andrews SC, Berks B, McClay J, Ambler A, Quail MA, Golby P, Guest JR: A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 1997;143:3633–3647.
  8. Barquera B, Zhou W, Morgan JE, Gennis RB: Riboflavin is a component of the Na+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci USA 2002a;99:10322–10324.
  9. Barquera B, Hellwig P, Zhou W, Morgan JE, Hase CC, Gosink KK, Nilges M, Bruesehoff PJ, Roth A, Lancaster CR, Gennis, RB: Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 2002b;41:3781–3789.
  10. Belogrudov GI, Hatefi Y: Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry 1994;33:4571–4576.
  11. Bott M, Thauer RK: Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem 1989;179:469–472.
  12. Böttcher B, Scheide D, Hesterberg M, Nagel-Steger L, Friedrich T: A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 2002;277:17970–17977.
  13. Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V: Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 2003;545:9–17.
  14. Braun M, Bungert S, Friedrich T: Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 1998;37:1861–1867.
  15. Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT: [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 2003;7:145–157.
  16. Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SP, Friedrich B: The soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 2005;187:3122–3132.
  17. Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C: Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochim Biophys Acta 2004;1658:212–224.
  18. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE: Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2003;2:117–126.
  19. Chevallet M, Dupuis A, Lunardi J, van Belzen R, Albracht SPJ, Issartel JP: The NuoI subunit of the Rhodobacter capsulatus respiratory complex I (equivalent to the bovine TYKY subunit) is required for proper assembly of the membranous and peripheral domains of the enzyme. Eur J Biochem 1997;250:451–458.
  20. Chevallet M, Dupuis A, Issartel JP, Lunardi J, van Belzen R, Albracht SPJ: Two EPR-detectable [4Fe-4S] clusters, N2a and N2b, are bound to the NuoI (TYKY) subunit of NADH:ubiquinone oxidoreductase (complex I) from Rhodobacter capsulatus. Biochim Biophys Acta 2003;1557: 51–66.
  21. Colthup NB, Wiberley, SE, Daly LH: Introduction to Infrared and Raman Spectroscopy. Boston, Academic Press, 1990.
  22. Darrouzet E, Issartel JP, Lunardi J, Dupuis A: The 49-kDa subunit of NADH-ubiquinone oxidoreductase (complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 1998;431:34– 38.
  23. Duarte M, Populo H, Videira A, Friedrich T, Schulte U: Disruption of iron-sulphur cluster N2 from NADH:ubiquinone oxidoreductase by site-directed mutagenesis. Biochem J 2002;364:833–839.
  24. Dupuis A, Chevallet M, Darrouzet E, Duborjal H, Lunardi J, Issartel JP: The complex I from Rhodobacter capsulatus. Biochim Biophys Acta 1998;1364:147–169.
  25. Earley FGP, Patel SD, Ragan CI, Attardi G: Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H]dihydrorotenone. FEBS Lett 1987;219:108–112.
  26. Flemming D, Schlitt A, Spehr V, Bischof T, Friedrich T: Iron-sulfur cluster N2 of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is located on subunit NuoB. J Biol Chem 2003a;278:47602–47609.
  27. Flemming D, Hellwig P, Friedrich T: Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coli NADH:ubiquinone oxidoreductase. J Biol Chem 2003b;278:3055–3062.
  28. Flemming D, Hellwig P, Lepper S, Kloer D, Friedrich T: Catalytic importance of acidic amino acids on subunit NuoB of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). 2005 (submitted).
  29. Friedrich T, Weidner U, Nehls U, Fecke W, Schneider R, Weiss H: Attempts to define distinct parts of NADH:ubiquinone oxidoreductase (complex I). J Bioenerg Biomembr 1993;25:331–339.
  30. Friedrich T, Steinmüller K, Weiss H: The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 1995;367:107–111.
  31. Friedrich T, Weiss H: Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 1997;187:529–541.
  32. Friedrich T: The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1998;1364:134–146.
  33. Friedrich T, Brors B, Hellwig P, Kintscher L, Rasmussen T, Scheide D, Schulte U, Mäntele W, Weiss H: Characterization of two novel redox groups in the respiratory NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 2000;1459:305–309.
  34. Friedrich T, Scheide D: The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 2000;479:1–5.
  35. Friedrich T: Complex I: a chimaera of a redox and conformation driven proton-pump? J Bioenerg Biomembr 2001;33:169–179.
  36. Friedrich T, Böttcher B: The gross structure of the respiratory complex I: a Lego system. Biochim Biophys Acta 2004;1608:1–9.
  37. Friedrich T, Stolpe S, Schneider D, Barquera B, Hellwig P: Ion translocation by the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochem Soc Trans 2005;33:836–839.
  38. Fox JD, He Y, Shelver D, Roberts GP, Ludden PW: Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol 1996;178:6200–6208.
  39. Gabaldon T, Rainey D, Huynen MA: Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 2005;348:857–870.
  40. Gemperli AC, Dimroth P, Steuber J: The respiratory complex I (NDH I) from Klebsiella pneumoniae, a sodium pump. J Biol Chem 2002;277:33811–33817.
  41. Gemperli AC, Dimroth P, Steuber J: Sodium ion cycling mediates energy coupling between complex I and ATP synthase. Proc Natl Acad Sci USA 2003;100:839–844.
  42. Gondal JA, Anderson WM: The molecular morphology of bovine heart mitochondrial NADH-ubiquinone reductase. Native disulfide-linked subunits and rotenone-induced conformational changes. J Biol Chem 1985;260:12690–12694.
  43. Gong X, Xie T, Yu L, Hesterberg M, Scheide D, Friedrich T, Yu CA: The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J Biol Chem 2003;278: 25731–25737.
  44. Grgic L, Zwicker K, Kashani-Poor N, Kerscher S, Brandt U: Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I. J Biol Chem 2004;279:21193–21199.
  45. Grigorieff N: Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 1999;9:476–483.
  46. Gurrath M, Friedrich T: Adjacent cysteines are capable of ligating the same tetranuclear iron-sulfur cluster. Proteins 2004;56:556–563.
  47. Guzman L, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bact 1995;177:4121–4130.
  48. Hase CC, Barquera B: Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 2001;1505:169–178.
  49. Hassinen IE, Vuokila PT: Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. Biochim Biophys Acta 1993;1144:107–124.
  50. Heazlewood JL, Howell KA, Millar AH: Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta 2003;1604:159–169.
  51. Hedderich R: Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 2004;36:65–75.
  52. Hellwig P, Behr J, Ostermeier C, Richter OMH, Pfitzner U, Odenwald A, Ludwig B, Michel H, Mäntele W: Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy. Biochemistry 1998;37:7390–7399.
  53. Hellwig P, Scheide D, Bungert S, Mäntele W, Friedrich T: FT-IR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli: oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chain. Biochemistry 2000;39:10884–10891.
  54. Hellwig P, Stolpe S, Friedrich T: FTIR spectroscopic study on the conformational reorganisation in E. coli complex I due to redox-driven proton translocation. Biopolymers 2004;74:69–72.
  55. Hellwig P, Flemming D, Stolpe S, Friedrich T: Protonation/deprotonation of NADH:ubiquinone oxidoreductase (complex I) Coupled with redox-induced conformational changes. 2005 (submitted).
  56. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN: Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003;301:616–620.
  57. Ingledew WJ, Ohnishi T: An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem J 1980;186:111–117.
  58. Kashani-Poor N, Zwicker K, Kerscher S, Brandt U: A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 2001;276:24082–24087.
  59. Kerby RL, Ludden PW, Roberts GP: Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol 1995;177:2241–2244.
  60. Krebs W, Steuber J, Gemperli AC, Dimroth P: Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 1993;3:590–598.
  61. Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T: Isolation and characterization of the proton-translocating NADH:ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem 1995;230:538–548.
  62. Lenz O, Bernhard M, Buhrke T, Schwartz E, Friedrich B: The hydrogen-sensing apparatus in Ralstonia eutropha. J Mol Microbiol Biotechnol 2002;4:255–262.
  63. Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hägerhall C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T: EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 2002;34:193–208.
  64. Mamedova AA, Holt PJ, Carroll J, Sazanov LA: Substrate-induced conformational change in bacterial complex I. J Biol Chem 2004;279:23830–23836.
  65. Mäntele W: Reaction-induced infrared difference spectroscopy for the study of protein function and reaction mechanisms. Trends Biochem Sci 1993;18:197–202.
  66. Massanz C, Schmidt S, Friedrich B: Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of Alcaligenes eutrophus. J Bact 1998;180:1023–1029.
  67. Mathiesen C, Hägerhäll C: Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta2002;1556:121–132.
  68. Mathiesen C, Hägerhäll C: The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 2003;549:7–13.
  69. Meuer J, Bartoschek S, Koch J, Künkel A, Hedderich R: Purification and catalytic properties of Ech hydrogenase from Methanosarcina barke ri. Eur J Biochem 1999;265:325–335.
  70. Nakamaru-Ogiso E, Sakamoto K, Matsuno-Yagi A, Miyoshi H, Yagi T: The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 2003;42:746–754.
  71. Nehls U, Friedrich T, Schmiede A, Ohnishi T, Weiss H: Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J Mol Biol 1992;227:1032–1042.
  72. Oh J, Bowien B: Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. J Biol Chem 1998;273:26349–26360.
  73. Ohnishi T, Leigh JS, Ragan CI, Racker E: Low temperature electron paramagnetic resonance studies on iron-sulfur centers in cardiac NADH dehydrogenase. Biochem Biophys Res Commun 1974;56:775–782.
  74. Ohnishi T: Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1998;1364:186–206.
  75. Ohnishi T, Johnson JE Jr, Yano T, Lobrutto R, Widger WR: Thermodynamic and EPR studies of slowly relaxing ubisemiquinone species in the isolated bovine heart complex I. FEBS Lett 2005;579:500–506.
  76. Pilkington S, Skehel JM, Gennis RB, Walker JE: Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. Biochemistry 1991;30:2166–2175.
  77. Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, Friedrich T: Identification of two tetranuclear FeS clusters on the ferredoxin-type subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 2001;40:6124–6131.
  78. Ritter M, Palsdottir H, Abe M, Mantele W, Hunte C, Miyoshi H, Hellwig P: Direct evidence for the interaction of stigmatellin with a protonated acidic group in the bc1 complex from Saccharomyces cerevisiae as monitored by FTIR difference spectroscopy and 13C-specific labeling. Biochemistry 2004;43:8439–8446.
  79. Sapra R, Bagramyan K, Adams MW: A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 2003;100:7545–7550.
  80. Sazanov LA, Carroll J, Holt P, Toime L, Fearnley IM: A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (complex I). J Biol Chem 2003;278:19483–19491.
  81. Schmidt M, Friedrich T, Wallrath J, Ohnishi T, Weiss H: Accumulation of the pre-assembled membrane arm of NADH:ubiquinone oxidoreductase in mitochondria of manganese-limited grown Neurospora crassa. FEBS Lett 1992;313:8–11.
  82. Schuler F, Yano T, DiBernardo S, Yagi T, Yankovskaya V, Singer T, Casida JE: NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. Proc Natl Acad Sci USA 1999;96:4149–4153.
  83. Sinegina L, Wikström M, Verkhovsky MI, Verkhovskaya ML: Activation of Isolated NADH:ubiquinone reductase I (complex I) from Escherichia coli by detergent and phospholipids. Recovery of ubiquinone reductase activity and changes in EPR signals of iron-sulfur clusters. Biochemistry 2005;44:8500–8506.
  84. Sled VD, Friedrich T, Leif H, Weiss H, Meinhardt SW, Fukumori Y, Calhoun MW, Gennis RB, Ohnishi T: Bacterial NADH-quinone oxidoreductases: iron-sulfur clusters and related problems. J Bioenerg Biomembr 1993;25:347–356.
  85. Smeitink J, Sengers R, Trijbels F, van den Heuvel L: Human NADH: ubiquinone oxidoreductase. J Bioenerg Biomembr 2001;33:259–266.
  86. Spehr V, Schlitt A, Scheide D, Guénebaut V, Friedrich T: Overexpression of the Escherichia colinuo-operon and isolation of the overproduced NADH:ubiquinone oxidoreductase (complex I). Biochemistry 1999;38:16261–16267.
  87. Steuber J, Schmidt C, Rufibach M, Dimroth P: Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 2000;35:428–434.
  88. Steuber J: Na+ translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 2001;1505:45–56.
  89. Steuber J: The C-terminally truncated NuoL subunit (ND5 homologue) of the Na+-dependent complex I from Escherichia coli transports Na+. J Biol Chem 2003;278:26817–26822.
  90. Stolpe S, Friedrich T: The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 2004;279:18377–18383.
  91. Tersteegen A, Hedderich R: Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 1999;264:930–943.
  92. Videira A, Duarte M: From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta 2002;1555:187–191.
  93. Vignais PM, Billoud B, Meyer J: Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 2001;25:455–501.
  94. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC: Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 1995;373:580–587.
  95. Vuokila PT, Hassinen IE: N,N′-dicyclohexylcarbodi-imide-sensitivity of bovine heart mitochondrial NADH:ubiquinone oxidoreductase. Inhibition of activity and binding to subunits. Biochem J 1988;249:339–344.
  96. Vuokila PT, Hassinen IE: DCCD sensitivity of electron and proton transfer by NADH:ubiquinone oxidoreductase in bovine heart submitochondrial particles – a thermodynamic approach. Biochim Biophys Acta 1989;974:219–222.
  97. Walker JE: The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 1992;25:253–324.
  98. Wallace BJ, Young IG: Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta 1977;461:84–100.
  99. Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H: The gene locus of the proton-translocating NADH:ubiquinone oxidoreductase in Escherichia coli. J Mol Biol 1993;233:109–122.
  100. Weiss H, Friedrich T, Hofhaus G, Preis D: The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem 1991;197:563–576.
  101. Xu X, Matsuno-Yagi A, Yagi Y: DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry 1993;32:968–981.
  102. Yagi T: Inhibition of NADH-ubiquinone reductase activity by N,N′-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. Biochemistry 1987;26:2822–2828.
  103. Yagi T, Matsuno-Yagi A: The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 2003;42:2266–2274.
  104. Yamaguchi M, Belogrudov GI, Hatefi Y: Mitochondrial NADH-ubiquinone oxidoreductase (complex I). Effect of substrates on the fragmentation of subunits by trypsin. J Biol Chem 1998;273:8094–8098.
  105. Yano T, Chu SS, Sled VD, Ohnishi T, Yagi T: The proton-translocating NADH-quinone oxidoreductase (NDH-1) of thermophilic bacterium Thermus thermophilus HB-8. Complete DNA sequence of the gene cluster and thermostable properties of the expressed NQO2 subunit. J Biol Chem 1997;272:4201–4211.
  106. Yano T, Magnitsky S, Sled VD, Ohnishi T, Yagi T: Characterization of the putative 2×[4Fe-4S]-binding NQO9 subunit of the proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans. Expression, reconstitution, and EPR characterization. J Biol Chem 1999;274:28598–28605.
  107. Yano T, Magnitsky S, Ohnishi T: Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction. Biochim Biophys Acta 2000;1459:299–304.
  108. Yano T, Dunham WR, Ohnishi T: Characterization of the delta μH+-sensitive ubisemiquinone species (SQNf) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry 2005;44:1744–1754.
  109. Young-Mog K, Tachibana Y, Shimamoto T, Shimamoto T, Tsuchiya T: Inhibition of melibiose transporter by amiloride in Escherichia coli. Biochem Biophys Res Commun 1997;233:147–149.
  110. Zhou W, Bertsova YV, Feng B, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B: Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 1999;38:16246–16252.
  111. Zickermann V, Bostina M, Hunte C, Ruiz T, Radermacher M, Brandt U: Functional implications from an unexpected position of the 49-kDa subunit of NADH:ubiquinone oxidoreductase. J Biol Chem 2003;278:29072–29078.
  112. Zientz E, Bongaerts J, Unden G: Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 1998;180:5421–5425.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50