Journal Mobile Options
Table of Contents
Vol. 26, No. 1, 2006
Issue release date: April 2006
Section title: Original Report: Laboratory Investigation
Am J Nephrol 2006;26:22–33
(DOI:10.1159/000091783)

Acute-on-Chronic Renal Failure in the Rat: Functional Compensation and Hypoxia Tolerance

Goldfarb M. · Rosenberger C. · Abassi Z. · Shina A. · Zilbersat F. · Eckardt K.U. · Rosen S. · Heyman S.N.
aNephrology Unit, Bikur Holim Hospital, Jerusalem, bDepartment of Physiology, the Technion Medical School, Haifa, and cDepartment of Medicine, Hadassah-Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel; dDepartment of Nephrology and Critical Care, Charité University Clinic, Berlin, and eDivision of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany; fDepartment of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Report: Laboratory Investigation

Received: 12/21/2005
Accepted: 12/25/2005
Published online: 4/5/2006

Number of Print Pages: 12
Number of Figures: 6
Number of Tables: 4

ISSN: 0250-8095 (Print)
eISSN: 1421-9670 (Online)

For additional information: http://www.karger.com/AJN

Abstract

Background: We hypothesized that chronic renal parenchymal disease may predispose to acute renal failure (ARF), facilitating the induction of hypoxic medullary tubular injury. Methods: To induce chronic renal parenchymal injury, rats underwent sham operation (control) or bilateral 50-min clamping of the renal artery [ischemia-reperfusion (IR)]. One or 3 months later, both groups were subjected to an ARF protocol, consisting of radiocontrast and the inhibition of prostaglandin and nitric oxide synthesis. Renal function and morphology were determined 24 h later. Results: Chronic tubulointerstitial changes (fibrosis, atrophy and hypertrophy) in the IR group correlated with baseline tubular function, but glomerular function was preserved. Functional deterioration after the ARF protocol was only marginally more pronounced in the IR group, and the degree of medullary acute tubular necrosis (ATN) was unaffected by prior IR. The extent of both tubular necrosis and chronic tubulointerstitial changes independently predicted the acute decline in renal function. Immunostaining of IR kidneys disclosed critically low medullary pO2 (determined by pimonidazole adducts), regional hypoxic cell response (hypoxia-inducible factors) and upregulation of endothelin-B receptors. Conclusions: Compensatory changes result in normal plasma creatinine 1 and 3 months after IR, despite diminished tubular function. Preexisting renal disease only marginally predisposes to ARF, and the extent of ATN is not significantly enhanced. These findings illustrate the complex interaction between chronic and acute renal injury and dysfunction and parallel the difficulty of their assessment in the clinical practice. Adaptive cellular responses to chronic hypoxia in conjunction with parenchymal loss and decreased oxygen demand might alleviate acute hypoxic injury.


Article / Publication Details

First-Page Preview
Abstract of Original Report: Laboratory Investigation

Received: 12/21/2005
Accepted: 12/25/2005
Published online: 4/5/2006

Number of Print Pages: 12
Number of Figures: 6
Number of Tables: 4

ISSN: 0250-8095 (Print)
eISSN: 1421-9670 (Online)

For additional information: http://www.karger.com/AJN


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.