Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

Spectral karyotyping of human, mouse, rat and ape chromosomes – applications for genetic diagnostics and research

Schrock E.a · Zschieschang P.a · O’Brien P.b · Helmrich A.c · Hardt T.a · Matthaei A.a · Stout-Weider K.d
aInstitut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); bDepartment of Clinical Veterinary Medicine, Centre for Veterinary Science, Veterinary Cytogenetics Group, Madingley Road, Cambridge (UK); cInstitut de Génétique et de Biologie Moléculaire et Cellulaire, CU de Strasbourg, Illkirch (France); dInstitut für Medizinische Genetik, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin (Germany) Cytogenet Genome Res 114:199–221 (2006) (DOI:10.1159/000094203)

Abstract

Spectral karyotyping (SKY) is a widely used methodology to identify genetic aberrations. Multicolor fluorescence in situ hybridization using chromosome painting probes in individual colors for all metaphase chromosomes at once is combined with a unique spectral measurement and analysis system to automatically classify normal and aberrant chromosomes. Based on countless studies and investigations in many laboratories worldwide, numerous new chromosome translocations and other aberrations have been identified in clinical and tumor cytogenetics. Thus, gene identification studies have been facilitated resulting in the dissection of tumor development and progression. For example, different translocation partners of the TEL/ETV6 transcription factor that is specially required for hematopoiesis within the bone marrow were identified. Also, the correct classification of complex karyotypes of solid tumors supports the prognostication of cancer patients. Important accomplishments for patients with genetic diseases, leukemias and lymphomas, mesenchymal tumors and solid cancers are summarized and exemplified. Furthermore, studies of disease mechanisms such as centromeric DNA breakage, DNA double strand break repair, telomere shortening and radiation-induced neoplastic transformation have been accompanied by SKY analyses. Besides the hybridization of human chromosomes, mouse karyotyping has also contributed to the comprehensive characterization of mouse models of human disease and for gene therapy studies.

 

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50