Journal Mobile Options
Table of Contents
Vol. 78, No. 1, 2007
Issue release date: January 2007
Section title: Original Paper
Urol Int 2007;78:23–29
(DOI:10.1159/000096930)

Different Types of Scaffolds for Reconstruction of the Urinary Tract by Tissue Engineering

Brehmer B. · Rohrmann D. · Becker C. · Rau G. · Jakse G.
aDepartment of Urology, University Clinic Aachen, and bHelmholtz Institute for Biomedical Engineering, Rheinisch-Westfälische Technical University Aachen, Aachen, Germany

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: 9/23/2005
Accepted: 5/2/2006
Published online: 1/10/2007

Number of Print Pages: 7
Number of Figures: 5
Number of Tables: 2

ISSN: 0042-1138 (Print)
eISSN: 1423-0399 (Online)

For additional information: http://www.karger.com/UIN

Abstract

Introduction: Tissue engineering is an important and expanding field in reconstructive surgery. The ideal biomaterial for urologic tissue engineering should be biodegradable and support autologous cell growth. We examined different scaffolds to select the ideal material for the reconstruction of the bladder wall by tissue engineering. Materials and Methods: We seeded mouse fibroblasts and human keratinocytes in a co-culture model on 13 different scaffolds. The cell-seeded scaffolds were fixed and processed for electron microscopy, hematoxylin and eosin stain, and immunohistochemistry. Cell density and epithelial cell layers were evaluated utilizing a computer-assisted optical measurement system. Results: Depending on the growth pattern, scaffolds were classified into the following three distinct scaffold types: carrier-type scaffolds with very small pore sizes and no ingrowth of the cells. This scaffold type induces a well-differentiated epithelium. Fleece-type scaffolds with fibers and huge pores. We found cellular growth inside the scaffold but no epithelium on top of it. Sponge-type scaffolds with pores between 20 and 40 µm. Cellular growth was observed inside the scaffold and well-differentiated epithelium on top of it. Conclusion: To our knowledge, this is the first time three distinct scaffold types have been reported. All types supported the cell growth. The structure of the scaffolds affects the pattern of cell growth.


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: 9/23/2005
Accepted: 5/2/2006
Published online: 1/10/2007

Number of Print Pages: 7
Number of Figures: 5
Number of Tables: 2

ISSN: 0042-1138 (Print)
eISSN: 1423-0399 (Online)

For additional information: http://www.karger.com/UIN


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.