Inhibition of Nitric Oxide Synthases Abrogates Pregnancy-Induced Uterine Vascular Expansive Remodeling

George Osol a Carolyn Barron a Natalia Gokina a Maurizio Mandala b

a Department of Obstetrics and Gynecology, College of Medicine, University of Vermont, Burlington, Vt., USA; b Department of Cell Biology, University of Calabria, Cosenza, Italy

Key Words
Hydralazine · Hypertension · Nitric oxide · Uterine circulation · Vascular remodeling during pregnancy

Abstract

Background/Aims: It was the aim of this study to test the hypothesis that hypertension and/or inhibition of nitric oxide (NO) synthases alters uterine vascular remodeling during pregnancy. Methods: Using a model of hypertension (NO synthase inhibition with L-NAME) in nonpregnant and pregnant rats, comparisons were made with age-matched controls, as well as with animals receiving hydralazine along with L-NAME to maintain normotension in the presence of NO synthase inhibition. Circumferential and axial remodeling of large (main uterine, MUA) and small (premyometrial radial) arteries were quantified and compared. Results: L-NAME treatment prevented expansive circumferential remodeling of the MUA; cotreatment with hydralazine was without effect. Circumferential remodeling of smaller premyometrial radial arteries was also significantly attenuated in hypertensive pregnant animals, while premyometrial radial arteries from rats receiving hydralazine with L-NAME were of intermediate diameter. Neither hypertension nor NO synthase inhibition had any effect on the substantial (200–300%) axial growth of MUA or premyometrial radial arteries. Conclusion: NO plays a major role in facilitating pregnancy-induced expansive remodeling in the uterine circulation, particularly in larger arteries. Some beneficial effects of hydralazine on expansive circumferential remodeling were noted in smaller radial vessels, and these may be linked to its prevention of systemic hypertension and/or to local effects on the arterial wall. Neither NO synthase inhibition nor hypertension had any effect on arterial longitudinal growth.

Introduction

Preeclampsia, a complex human disease that occurs in approximately 5% of pregnancies, most often in the third trimester, is defined by 2 distinct criteria: repeatedly elevated blood pressure (>140/90 mm Hg) and proteinuria (>300 mg/24 h). Although its epidemiology remains elusive, there is a strong association with reduced uterine perfusion and abnormal placentation [1, 2]. Unfortunately, there are no animal models that replicate the human condition. Increased production of nitric oxide (NO) by the endothelium contributes to the hemodynamic changes associated with normal pregnancy [3–6]; conversely, a reduction in NO signaling has been observed in preeclamptics [7] and in several forms of chronic hypertension [8, 9]. Therefore, chemical inhibition of NO synthases has become an accepted experimental approach for inducing hypertension in pregnant animals [10–16]. Rats subjected to chronic NO synthase inhibition during gestation develop the principal pathologic condi-
tions associated with preeclampsia, e.g., hypertension, proteinuria, renal damage and fetal intrauterine growth retardation [10, 14, 16].

Using this model, most published studies to date have focused on understanding the functional implications of hypertension/NO synthase inhibition and have documented enhanced vascular pressor responses in vivo [10], heightened vasoconstrictor responses in isolated vessels [6, 17, 18], impaired endothelium-dependent relaxation [18, 19], enhanced calcium signaling [20] and overactivation of calcium-sensitizing enzymes such as protein kinase C and RhoA [11, 21].

Less is known about the effects of hypertension and/or NO synthase inhibition on vascular structure. Two published studies [22, 23] reported a significant attenuation of uterine vascular growth, although neither distinguished the effects of NO synthase inhibition from those of hypertension, which quickly develops secondary to chemical (L-NAME) or genetic (NOS-3 knockout) inhibition of NO signaling. This distinction is relevant, since hypertension-induced remodeling of the vascular wall has been documented in numerous studies, with the general pattern being opposite to that of pregnancy, i.e., inward remodeling (narrowing of the lumen) with increased wall thickness. Conversely, at least in the uterine circulation, pregnancy is associated with outward eutrophic or hypertrophic remodeling [22–27].

The objective of this study was to test the hypothesis that hypertension and/or NO synthase inhibition would reduce the normal remodeling of uterine arteries during gestation. Corollary hypotheses were that (1) the effects may be more pronounced in smaller resistance vessels, (2) both axial and circumferential remodeling (i.e., arterial widening and lengthening) would be affected, and (3) elevated blood pressure may have effects that are different from those of NO synthase inhibition. To make the latter distinction, we included a group of animals that received hydralazine in addition to L-NAME to prevent the development of systemic hypertension in the continued presence of NO synthase inhibition.

Methods

Animals, Experimental Treatments and Preparation of Tissues

Adult (12–14 weeks old) virgin and timed pregnant female Sprague-Dawley rats (n = 69) were purchased from Charles River Laboratories (Kingston, Calif., USA) and housed in the Small Animal Facility at the University of Vermont which is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care. Feed and water were provided ad libitum.

All experimental protocols were approved by the Institutional Animal Care and Use Committee.

The 6 treatment groups were: (1) nonpregnant and (2) late pregnant (day 20 of a 22-day gestation) controls (NP-C, n = 14; LP-C, n = 17), (3) nonpregnant and (4) late pregnant hypertensives (0.5 g/l of L-NAME in drinking water; NP-L, n = 10; LP-L, n = 15), and (5) nonpregnant and (6) late pregnant NO synthase-inhibited normotensive animals (NP-L+H, n = 6; LP-L+H, n = 7) that received a mixture of L-NAME (0.5 g/l) and hydralazine (0.27 g/l), also in drinking water. In pregnant animals, treatment was started on day 10 of pregnancy and continued until day 20; both age-matched NP-L and NP-L+H animals were also treated for a 10-day duration prior to use.

Blood pressures were measured noninvasively by determining the tail blood volume with a volume pressure recording sensor and an occlusion tail cuff (CODA System, Kent Scientific, Torrington, Conn., USA). Pressures were taken at the same time of day (late morning), 10 readings per animal, and averaged during the week prior to experimentation. Mean arterial pressures (diastolic + 1/3 of pulse pressure) were derived and expressed in mm Hg.

On the morning of an experiment, each animal was euthanized with an intraperitoneal injection of Nembutal (pentobarbital sodium, 50 mg/kg; Ovation Pharmaceuticals, Deerfield, Ill., USA) and, once a surgical plane of anesthesia was attained (toe pinch test), decapitated in a small animal guillotine. The abdomen was opened and the uterus and its contents were removed en bloc and pinned in a Petri dish filled with oxygenated (bubbled with a mixture of 5% CO2, 10% O2 and 85% N2) buffered saline (PBS) solution. Care was taken to pin out the tissue in a planar manner without imposing any stretch or compression on the mesometrial arcade or uterine horns.

Experimental Measurements

In pregnant animals, the number of fetuses in each horn was recorded, as were individual fetal and placental weights. The length of the main uterine artery (MUA, mm) was measured along its curvature from the cervix to the end of the uterine horn. The inner and outer diameter of the MUA at the approximate midpoint of each horn was measured with a stereomicroscope (Zeiss, Germany) using a calibrated reticule and the difference between the inner and outer diameter divided by 2, as a measure of wall thickness. We previously verified that, under these experimental conditions, the MUA does not possess any tone, and measurements correspond to the fully relaxed state. The inner and outer diameter values were then used to derive the wall to lumen ratio (dimensionless) and the cross-sectional area (μm²) by calculating the area defined by the outer diameter and subtracting the area of the lumen (based on the inner diameter) using the standard formula for the area of a circle (πr²). All measurements were performed in PBS at room temperature.

In rodents, the uterus is supplied by a manifold arrangement of segmental vessels that emanate from the MUA, which runs parallel to and at some distance from the uterine wall. Segmental artery (SA) length was determined by measuring the distance between the MUA and the uterine wall at 2 randomly chosen points in each uterine horn and averaged to provide 1 value per animal.

Although the number of implantation sites in each horn was generally comparable (6–9, on average), some animals did have a...
were purchased from Sigma Chemical Co. (St. Louis, Mo., USA) and prepared on the day of an experiment.

Statistical Analysis

Statistical differences between treatment groups were determined from individual vessel data (SigmaPlot 9.0; Systat Software Inc., San Jose, Calif., USA) by analysis of variance (ANOVA) followed by multiple comparison tests to evaluate differences between treatment means. Statistical differences (p < 0.05) are denoted by different letters (e.g., 'a' is different from 'b', while 'b, c' is different from 'a', but not different from 'b' or 'c'). Data are expressed as mean values ± standard error of the mean, with n values representing the number of animals. In some cases, to isolate the effects of gestation alone (NP-C vs. LP-C) without the confounding effects of variability due to treatment, unpaired t tests were used to assess differences between mean values. Regression analysis was performed followed by the calculation of the coefficient of determination (r²) to determine the relationship between arterial (MUA and SA) length and the number of implantation sites.

Results

Effects of L-NAME and Hydralazine Treatment on Blood Pressure and Reproductive Status

At the concentration (0.5 g/l) and duration (10 days) used, L-NAME treatment did not affect the body weight of nonpregnant rats. All LP animals were significantly heavier than age-matched NP-C, and body weights of pregnant animals receiving L-NAME with or without hydralazine (LP-L, LP-L+H) were approximately 5% lower than those of LP-C.

Relative to controls, while mean arterial pressures were significantly increased (by 28 and 34%, on average) in the NP-L and LP-L groups, respectively (table 1), the mean arterial pressure of LP-L+H animals was similar to that of LP-C, as well as NP-L+H and NP-C.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Maternal weight, g</th>
<th>MAP, mm Hg</th>
<th>Litter size, n</th>
<th>Resorptions</th>
<th>Fetal weight, g</th>
<th>Placental weight, mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-C</td>
<td>295 ± 2.4^a (n = 14)</td>
<td>106 ± 1.4^a (n = 6)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NP-L</td>
<td>294 ± 6.0^b (n = 10)</td>
<td>136 ± 0.2^b (n = 6)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NP-L+H</td>
<td>273 ± 4.0^c (n = 6)</td>
<td>110 ± 2.6^c (n = 6)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LP-C</td>
<td>380 ± 6.4^a (n = 17)</td>
<td>93 ± 2.1^a (n = 13)</td>
<td>14.5 ± 0.41 (n = 11)</td>
<td>3/159 [1.9] (n = 11)</td>
<td>2.19 ± 0.040^d (n = 11)</td>
<td>427 ± 6.0^a-b (n = 11)</td>
</tr>
<tr>
<td>LP-L</td>
<td>358 ± 4.8^b (n = 15)</td>
<td>125 ± 1.9^b (n = 15)</td>
<td>14.4 ± 0.51 (n = 13)</td>
<td>10/188 [5.3] (n = 13)</td>
<td>1.98 ± 0.039^e (n = 13)</td>
<td>414 ± 7.6^a (n = 13)</td>
</tr>
<tr>
<td>LP-L+H</td>
<td>362 ± 7.7^c (n = 7)</td>
<td>98 ± 1.5^c (n = 12)</td>
<td>15.1 ± 0.77 (n = 7)</td>
<td>5/110 [4.5] (n = 7)</td>
<td>2.14 ± 0.032^f (n = 7)</td>
<td>450 ± 10.6^a (n = 7)</td>
</tr>
</tbody>
</table>

Values are the mean ± SE. Numbers in brackets are percentages. MAP = Mean arterial pressure. Different letters denote statistical significance (p < 0.05).
Fecundity was not affected, as there were no statistical differences in the total number of pups per litter (combined average 14.7) or resorption rate (combined average 18/457, or 3.9%). Fetal weights were significantly reduced in LP-L versus LP-C animals, with no difference between LP-C and LP-L+H. Placental weights were smaller in the LP-L group – significantly so relative to LP-L+H (p = 0.02), but not to LP-C (p = 0.08).

Effects of L-NAME and Hydralazine Co-Treatment on Arterial Elongation and Mesometrial Dimensions

In nonpregnant animals, treatment with L-NAME did not have any measurable effect on MUA length. The growth of the mesometrial arcade during pregnancy was considerable and resulted in an approximate doubling of MUA length in all 3 LP treatment groups, without any significant intertreatment differences (fig. 1a).

Although the average number of fetuses was similar between treatment groups (table 1), the number of pups in a particular horn ranged from 3 to 11. Reasoning that the overall uterine length would be influenced by the number of pups, regression analysis between MUA length and number of pups per individual horn was performed. A positive linear correlation was noted in the LP-C group, with an r² value of 0.76, showing that the number of implantation sites is a major determinant of MUA longitudinal growth (fig. 1b). Correlations between MUA length and number of pups in the LP-L and LP-L+H groups were also positive, but weaker (r² values = 0.50 and 0.35, respectively; data not shown).

Relative to nonpregnant animals, the SA length increased approximately 3 fold, with no differences between LP-C, LP-L or LP-L+H groups (fig. 2a). The relationship between the number of pups and LP-C SA length was also positive, with an r² value of 0.35 (fig. 2b), and of 0.43 and 0.51 in LP-L and LP-L+H, respectively (data not shown). The combined effect of increased MUA and SA length was to increase the mesometrial area approximately 5 fold, and to a similar extent in all treatment groups, with an average value of 261 ± 9.3 versus 1,350 ± 37.5 mm² in the nonpregnant versus the pregnant group (p < 0.001).

Effects of L-NAME and Hydralazine Co-Treatment on Circumferential Dimensional Changes in the MUA

Significant differences were noted in the unstressed lumen diameters of the MUA (fig. 3a). In nonpregnant animals, treatment with L-NAME induced a narrowing of the lumen by approximately 25% (p < 0.05). Pregnancy-induced circumferential remodeling resulted in a 50% increase in MUA lumen diameter (from 105 ± 6.7 to 158 ± 11.5 μm in NP-C vs. LP-C animals). There was no...
measurable remodeling in LP-L or LP-L+H animals (lumen diameters were not statistically different from the NP-C or NP-L groups) indicating that NO synthase inhibition rather than hypertension was primarily responsible for the observed effect.

MUA wall thickness was similar in all treatment groups (table 2); however, in view of the differences in lumen diameter, wall-to-lumen ratios were significantly greater in L-NAME-treated animals (NP-L, LP-L) and in LP-L+H animals. The cross-sectional area did not change with L-NAME treatment in nonpregnant animals and, due to within-treatment variability, there were also no significant differences among the 6 groups of animals.

Effects of L-NAME and Hydralazine Co-Treatment on Circumferential Dimensional Changes of Premyometrial Radial Arteries

As with the MUA, there were no differences between treatment groups in the extent of SA elongation, which was considerable in all pregnant animals (approximately 300%; fig. 2a). As shown in figure 3b, lumen diameters of radial premyometrial arteries increased by 33%, on average, in LP-C versus NP-C animals. There were no treatment differences in nonpregnant animals. Vessels from LP-L rats were significantly smaller than those from LP-C, while LP-L+H arteries were between those from the LP-C and LP-L animals.

The radial artery (RA) NP-C wall thickness values were larger than those of any pregnant group, while those from the NP-L+H group were smaller than those of NP-C, with intermediate values in the LP-L group. Due to expansive remodeling, the wall-to-lumen ratio was significantly reduced in vessels from pregnant animals, with no differences among the treatment groups. In view of the combination of a larger lumen and a some-

Table 2. MUA measurements of all treatment groups

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Wall thickness, μm</th>
<th>Wall:lumen</th>
<th>Wall CSA μm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-C (n = 12)</td>
<td>58 ± 3.67</td>
<td>1.01 ± 0.07a,b</td>
<td>29,042 ± 2,272</td>
</tr>
<tr>
<td>NP-L (n = 10)</td>
<td>62 ± 3.61</td>
<td>1.73 ± 0.12b</td>
<td>29,156 ± 3,337</td>
</tr>
<tr>
<td>NP-L+H (n = 6)</td>
<td>61 ± 3.29</td>
<td>1.51 ± 0.24a,b</td>
<td>29,447 ± 2,389</td>
</tr>
<tr>
<td>LP-C (n = 17)</td>
<td>56 ± 3.66</td>
<td>0.83 ± 0.11a</td>
<td>37,768 ± 3,299</td>
</tr>
<tr>
<td>LP-C (n = 15)</td>
<td>56 ± 3.28</td>
<td>1.42 ± 0.15a,b</td>
<td>26,585 ± 2,612</td>
</tr>
<tr>
<td>LP-L+H (n = 7)</td>
<td>67 ± 4.51</td>
<td>1.42 ± 0.10b</td>
<td>35,237 ± 4,090</td>
</tr>
</tbody>
</table>

Values are mean ± SE. CSA = Cross-sectional area. Different letters denote statistical significance (p < 0.05).
what thinner wall in pregnant animals, the cross-sectional area was similar among all 6 treatment groups (table 3).

Discussion

The principal findings of this study are that (1) NO is an important regulator of MUA remodeling during pregnancy, as treatment with L-NAME completely prevented the circumferential growth of the MUA; co-treatment with hydralazine was ineffective in restoring this process, suggesting the principal underlying mechanism to be chemical (NO synthase inhibition) rather than physical (elevation in intravascular pressure). (2) In the smaller resistance (radial) vessels, both hypertension and NO synthase inhibition appear to influence the circumferential remodeling process, since co-treatment with hydralazine resulted in diameters that were intermediate between those of control and L-NAME-treated animals. (3) In addition to circumferential expansion, significant gestational axial growth (elongation) occurs in the MUA, as well as in the smaller segmental (radial) vessels.

Pregnancy-induced uterine vascular growth is clinically relevant, as its attenuation is associated with placental underperfusion, preeclampsia and intrauterine growth restriction. Uteroplacental underperfusion may occur for any number of reasons, including attenuated placental growth, insufficient vascular remodeling, or excessive tone due to an imbalance of vasoactive influences favoring vasoconstriction. Although systemic hypertension induced by L-NAME would increase uterine perfusion pressure accordingly and may therefore partly obviate the need for expansive remodeling, the significant reduction in fetal weights in this and other studies utilizing the L-NAME model [10, 11, 16] suggests that a perfusion deficit does indeed exist, since fetal growth has long been known to be dependent on sufficient uteroplacental flow [30], although other mechanisms may also be contributory. In a recent preliminary report [31] using the eNOS knockout mouse model, a 55% reduction in uterine blood flow was measured (normalized to the weight of the uter-
shear stress and expansive circumferential remodeling and (3) the well-established linkage between elevated tissues. Thus, NO synthase inhibition may have both direct and indirect effects on the vascular wall of maternal and placental tissues, it is difficult to imagine that significant vessel elongation and angiogenesis do not occur, although some accommodation in length may be facilitated by uncoiling of vessels that display tortuosity, as does the MUA in women.

Although circumferential remodeling was outward eutrophic in both large and small vessels (as evidenced by similar cross-sectional areas in all treatment groups), taking both axial and circumferential growth into con-
sideration, reveals the extensive hypertrophic remodeling of the vessel wall in all arteries studied, with increases in mass on the order of 200–300%. This also highlights the fact that measures of the cross-sectional area alone, without consideration of axial changes, may underestimate the extent and lead to a misinterpretation of the true pattern of vascular remodeling. Because vessel elasticity is altered in pregnancy, measurements were intentionally made on unstressed (MUA) or minimally stressed (radial arteries) vessels as, under pressurized conditions, altered distensibility may introduce a bias in the results and lead to misinterpretation of remodeling data.

In summary, our results demonstrate an important role for NO signaling in the expansive circumferential gestational remodeling of the uterine circulation. This observation provides an interesting link to the theory that preeclampsia results from elevated levels of sFlt-1, a soluble receptor for vascular endothelial growth factor and placenta growth factor, in preeclamptic women [41]. An excess of soluble receptor would reduce the availability of these ligands to the vascular wall. Since both placenta growth factor and vascular endothelial growth factor stimulate endothelial NO release, a reduction in their signaling would create a vasoconstrictor imbalance and increase peripheral resistance and blood pressure. Our findings add a new dimension to this thinking, as they show that a reduction in NO signaling also impacts vessel remodeling in a way that would further increase uterine vascular resistance. This effect on structure, combined with loss of function (vasodilation), would further mitigate the increases in uterine blood flow required for normal placental perfusion and successful pregnancy outcome.

Acknowledgments

The authors acknowledge the excellent technical assistance of Ms. Kristen VanWoert and the continued support of the National Institutes of Health (NIH RO1 HL073895).

References