Dear Sir,

It is known that some patients with anemia of end-stage renal disease (ESRD) have reduced response to recombinant human erythropoietin (rHu-EPO) not due to infections, increased occult blood losses, iron deficiency or other known causes of rHu-EPO resistance [1]. From the hematological point of view, colony-forming unit erythroids (CFU-E) are totally sensitive to rHu-EPO, but the more immature burst-forming unit erythroids (BFU-E) are responsive only to very high doses of rHu-EPO because they need other growth factors like Interleukin-3 (IL-3) [2, 3], Interleukin-4 (IL-4) and granulocyte macro-fage colony-stimulating factor (GM-CSF) [4], a complex denominated burst-promoting activity (BPA).

So we can hypothesize that patients with low levels of BPA (low IL-3, IL-4 and GM-CSF) have deficient growth of BFU-E colonies which are not sufficiently mature to pass to the successive step of CFU-E and, consequently, need higher doses of rHu-EPO. The same problem may be involved in the mechanism of rHu-EPO resistance in patients with nonrenal anemias like aplastic anemias, myelodisplastic syndromes, refractory anemias, Fanconi anemia, Blackfan-Diamond anemia, anemias of myeloproliferative diseases. To confirm such hypothesis, 18 patients under treatment with rHu-EPO for ESRD anemia were investigated before and after rHu-EPO therapy (Erytrogen, Boehringer Mannheim, Italy). All the laboratory data were collected before and after 6 months of rHu-EPO therapy. \(\text{Hb}\), red blood cell count (RBC), white blood cell count (WBC), platelets (\(\text{PLT}\)) and hematocrit (Hct) were determined with Techicon HI, USA. IL-3, IL-4 and GM-CSF were determined with immunoenzymatic assays (IL-3 Quanti-kine Elisa Kit R and D Systems-USA, Inter-test-4 tm Human IL-4 Elisa Kit, Genzyme-USA,

F. Salvati
P. Strippoli
A. Scatizzi
M. Barchetti
R. Gaudio
A. Martella
A. Misserini

aDepartment of Internal Medicine, Renzetti Hospital, Lanciano, bDepartment of Nephrology, and cDepartment of Clinical Pathology, SS.Annunziata Regional Hospital, Taranto, Italy

Dr. Filippo Salvati, Via Guido Rosato n. 52, I-66034 Lanciano (Italy)
Factor Test™ Human GM-CSF Elisa Kit, Genzyme-USA). EPO was detected with EPO-Elisa, Boehringer Mannheim.

At the beginning of the study, laboratory data showed the following values (mean ± SD): Hb = 6.8 ± 0.8 g/dl; Hct = 20.7 ± 2.1%; Pt = 151.3 ± 510.0 · 10^3 mm3; WBC = 4,108 ± 1,301.3 · 10^3 mm3; RBC = 2,380 ± 501.4 · 10^3/ mm3; IL-3 = 497.3 ± 292 pg/ml; IL-4 = 0.592 ± 0.88 ng/ml; GM-CSF = 3.72 ± 34.0 pg/ml.

After rHu-EPO therapy, at the end of the study, there were significant differences in mean values ± SD of Hb (9.67 ± 1.1 g/dl; p = 0.001), Hct (32.1 ± 2.6%; p = 0.001), RBC (3,188 ± 158 · 10^3 mm3; p = 0.001). There were no significant differences between the values of PT, WBC, IL-3, IL-4 and GM-CSF at the beginning and at the end of the study.

To reach target Hb (9.5-10.5 g/dl), patients needed different rHu-EPO doses (from 35 to 120 U/kg b.w. 3 times/week intravenously).

Laboratory levels of IL-3, IL-4 and GM-CSF were inversely correlated with rHu-EPO doses. So, patients with high levels of IL-3 (> 600 pg/ml), IL-4 (> 0.60 ng/ml) and GM-CSF (> 50 pg/ml) responded to lower doses (< 70 U/kg b.w. 3 times/week) of rHu-EPO to reach Hb peak; on the contrary, patients with lower levels of IL-3 (< 600 pg/ml), IL-4 (< 0.60 ng/ml) and GM-CSF (< 50 pg/ml) responded to higher doses (> 70 U/kg b.w. 3 times/week).

Only 2 patients did not show this correlation. IL-3 values were better correlated with our hypothesis.

Reported data suggest that in anemia of ESRD, moderate lack of BPA (IL-3, IL-4, GM-CSF) can produce moderate EPO resistance, because BFU-E colonies are not sufficiently promoted by these growth factors and consequently not so able to pass to the successive step of CFU-E colonies, the only ones totally rHu-EPO responsive. At the moment, there are only very few reports with experimental ‘in vitro’ data about lack of BPA, IL-3, GM-CSF in patients with anemia of ESRD [5-7]. However, in anemia of ESRD, the problem of EPO resistance seems to be relative and easily corrected by increasing rHu-EPO doses. Some authors prospect the use of IL-3 in such patients, but we remember that the actual use of IL-3 is problematic: so also in Blackfan-Diamond anemia (caused by a presumable lack of IL-3), it is preferable in the affected children to use blood transfusions, because IL-3-treated patients often get quite sick with fevers [8,9].

On the other side, we know that many nonrenal anemias, like aplastic anemias, myelodysplastic syndromes, Fanconi anemia, anemia of myeloproliferative syndromes, are rarely responsive to rHu-EPO. Chemotherapy-induced anemia and anemia of malignancy (particularly of multiple myeloma) seem to respond better to rHu-EPO.

This very important clinical and therapeutic problem may be solved using also other growth factors like GM-CSF which seems to have a synergistic effect with rHu-EPO (there is not yet a big experience with IL-3 or IL-6).

In conclusion, our predictive protocol with immunoenzymatic Elisa dosage of the lacking growth factors, possibly using other laboratory techniques like soluble transfer-rin receptors together with EPO observed/predicted ratio, could be useful also in the treatment of nonrenal
anemias for a better use of rHu-EPO and eventually of the other growth factors which can cooperate with rHu-EPO if used in the so selected patients.

References