The Domain Organization of p67\textit{phox}, a Protein Required for Activation of the Superoxide-Producing NADPH Oxidase in Phagocytes

Satoru Yuzawaa, b, Kei Miyanoa, b, Kazuya Honbouc, Fuyuhiko Inagakic, Hideki Sumimotoa, b

aDepartment of Biochemistry, Kyushu University Graduate School of Medical Sciences and bMedical Institute of Bioregulation, Kyushu University, Fukuoka, and cDepartment of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

Abstract

The phagocyte NADPH oxidase, crucial for innate immunity, is dormant in resting cells, but becomes activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. In activation of the oxidase, the multidomain protein p67\textit{phox} plays a central role: it translocates to the membrane as a ternary complex with p47\textit{phox} and p40\textit{phox}, and interacts with the small GTPase Rac to assemble with the membrane-integrated catalytic protein gp91\textit{phox}, leading to superoxide production. Here we show, using small-angle X-ray scattering (SAXS) analysis, that p67\textit{phox} adopts an elongated conformation when it exists not only as a monomer but also as the heterotrimer. Although p67\textit{phox} harbors an N-terminal TPR domain for binding to Rac and a p40\textit{phox}-interacting PB1 domain, followed by an SH3 domain that associates with p47\textit{phox}, the present model suggests that no or few apparent associations occur between the domains. The positions of the protein-interaction domains in p67\textit{phox} contribute to activation of the phagocyte NADPH oxidase: the first SH3 domain that is located between the TPR and PB1 domains positively regulates oxidase activation only when it is present at the correct position; the PB1 domain placed at this SH3 domain position inhibits the oxidase by interacting with p40\textit{phox}.

Key Words

NADPH oxidase · Phagocyte · p67\textit{phox} · Domain organization · Small-angle X-ray scattering · Innate immunity

Introduction

Neutrophils play crucial roles in innate immunity [1, 2]. During phagocytosis of invading microbes, these cells produce superoxide, a precursor of powerful microbicidal oxidants, by the catalysis of the NADPH oxidase [3–9]. The significance of the phagocyte NADPH oxidase in host defense is evident from recurrent and life-threatening infections that occur in patients with chronic granulomatous disease (CGD), whose neutrophils genetically lack the superoxide-producing system [3–9].

The catalytic core of the phagocyte NADPH oxidase is the membrane-integrated cytochrome gp91\textit{phox}, which

S.Y. and K.M. contributed equally to the study.

SH3 domain that is located between the TPR and PB1 domains positively regulates oxidase activation only when it is present at the correct position; the PB1 domain placed at this SH3 domain position inhibits the oxidase by interacting with p40\textit{phox}.

SH3 domain that is located between the TPR and PB1 domains positively regulates oxidase activation only when it is present at the correct position; the PB1 domain placed at this SH3 domain position inhibits the oxidase by interacting with p40\textit{phox}.
forms a stable heterodimer with the membrane-spanning protein p22phox [3–9]. The oxidase is dormant in resting cells, and becomes activated during phagocytosis or upon cell stimulation by soluble agents such as chemoattractants and phorbol 12-myristate 13-acetate (PMA). The activation requires membrane translocation of the specialized proteins p67phox, p47phox and p40phox, and the small GTPase Rac, which are present in the cytosol of resting cells. At the membrane of stimulated cells, these factors assemble with the gp91phox, p22phox dimer, activating superoxide production. p67phox forms a ternary complex with p47phox and p40phox, p67phox plays an essential role in oxidase activation [3–9]. p47phox is not crucial for a cell-free activation system in the presence of excess amounts of p67phox and Rac [10, 11], whereas it is required under the conditions where the oxidase is activated in intact cells [3–9]. p40phox is dispensable in both cell-free and whole-cell systems, but enhances oxidase activation by facilitating membrane translocation of the ternary complex in stimulated cells [12–14].

The oxidase activator p67phox comprises 526 amino acids with a molecular mass of 59.8 kDa. It contains an N-terminal domain consisting of four tetratricopeptide (TPR) motifs and two SH3 domains that are separated by a PB1 domain (fig. 1). p67phox constitutively associates with p40phox via the PB1-PB1 interaction [12, 15, 16] and with p47phox via binding of the C-terminal SH3 domain to the p47phox proline-rich region [17–19], thereby forming the ternary complex [12, 20]. Upon cell stimulation, Rac translocates to the membrane independently of the p67phox–p47phox–p40phox complex, and interacts there with the p67phox TPR domain, the interaction of which is essential for activation of the phagocyte NADPH oxidase [21, 22]. Although the target of the N-terminal SH3 domain has not been identified, this module positively regulates the oxidase, which could be mediated via binding to gp91phox [23]. Thus, the functions of individual domains have been intensively studied; however, it is obscure whether domains in p67phox interact with each other and whether the three-dimensional domain organization contributes to oxidase activation.

A study using neutron scattering, in combination with analytical gel filtration, suggested that p67phox forms a homodimer, although the protein used had a tendency to aggregate even at low concentrations [24]. On the other hand, analytical centrifugation data indicated that p67phox is an elongated monomer, which explains its apparent high molecular mass on gel filtration analysis [20]. Thus, the oligomerization state of p67phox has been controversial, and the three-dimensional domain organization of this protein remains to be elucidated.

Here we show, using small-angle X-ray scattering (SAXS) analysis, that p67phox exists as a monomer that adopts an elongated conformation with no or few significant associations between the domains. This is in contrast to the structures of p47phox [25] and p40phox [26]; these two proteins show a more compact or globular structure via interdomain interactions. Furthermore, we demonstrate that the positions of the protein-interaction domains in p67phox play important roles in activation of the phagocyte NADPH oxidase.

Materials and Methods

Plasmid Construction

The human cDNAs encoding full-length p67phox (amino acids 1–526), p47phox (amino acids 1–390) and p40phox (amino acids 1–339) were prepared as described previously [12, 19, 21]. PCR-mediated site-directed mutagenesis was performed to obtain the following mutant p67phox: p67phox-mut1, in which the PB1 domain (amino acids 350–432) and the C-terminal SH3 domain (amino acids 458–518) were swapped; p67phox-mut2, in which the N-terminal SH3 domain (amino acids 240–301) and the PB1 domain (amino acids 458–518) were swapped; p67phox-mut3, in which the N- and C-terminal SH3 domains were swapped; and p67phox-mut4, which lacked the regions of amino acids 241–457 and 519–526. p67phox-mut1-ΔSH3(N), p67phox-mut2-ΔSH3(N), and p67phox-mut3-ΔSH3(N)

Fig. 1. Domain architecture of human p67phox. Human p67phox of 526 amino acids harbors an N-terminal domain composed of 4 TPR motifs, an N-terminal SH3 domain [SH3(N)], a PB1 domain (PB1) and a C-terminal SH3 domain [SH3(C)]. Rac in the GTP-bound state binds to the TPR domain, p40phox associates with the PB1 domain and p47phox interacts with the C-terminal SH3 domain.
were the proteins with the truncation of SH3(N) in addition to the above-mentioned domain swapping. p40_{phox}-mut carried the D289A substitution. The cDNA for gp91_{phox} were ligated to the mammalian expression vector pcDNA3 (Invitrogen). The cDNAs for p22_{phox}, p67_{phox}, p47_{phox} and p40_{phox} were ligated to the mammalian expression vector pEF-BOS; p67_{phox} was constructed for expression as a Myc-tagged protein; p47_{phox} and p40_{phox} as a Flag-tagged protein. Mutations leading to the indicated amino acid substitutions were introduced by PCR-mediated site-directed mutagenesis. All constructs were sequenced for confirmation of their identities.

Protein Preparation and Analytical Ultracentrifugation

Bacterially expressed p67_{phox}, p47_{phox} and p40_{phox} were purified, and the binary complexes (p67_{phox}-p47_{phox} and p67_{phox}-p40_{phox}) as well as the ternary complex (p67_{phox}-p47_{phox}-p40_{phox}) were prepared, as previously described [27].

To characterize the homogeneity of molecular species, hydrodynamic properties and oligomeric states of the samples, analytical ultracentrifugation experiments were preformed using a Beckman Model XL-1 analytical ultracentrifuge (Beckman Coulter Inc.) equipped with both UV-visible and Rayleigh interference optical detection system using an An-60 Ti rotor at 20°C. In sedimentation velocity experiments, interference fringe displacement profiles were recorded every 1 min up to 800 experimental curves at the rotor speed of 40,000 rpm. The c(s) size distributions were calculated from the experimental curves using the program Sedfit (version 8.9) [28]. The program SEDNTERP (version 1.08) was used to calculate the partial specific volume and solvent density from the amino acid and buffer compositions [29]. All proteins and complexes (p67_{phox}, p47_{phox}, p40_{phox}, p67_{phox}-p47_{phox}, p67_{phox}-p40_{phox} and p67_{phox}-p47_{phox}-p40_{phox}) yielded a single sedimentation boundary, indicating sample homogeneity. Sedimentation equilibrium experiments were performed as previously described [30]. The analyses revealed that p67_{phox}, p47_{phox} and p40_{phox} existed as a monomer, the p67_{phox}-p47_{phox} and p67_{phox}-p40_{phox} complexes as a heterodimer, and the p67_{phox}-p47_{phox}-p40_{phox} complex as a 1:1:1 trimer. The molecular masses of the samples that were estimated from the experiments were in good agreement with those calculated from their amino acid sequences.

SAXS and Molecular Shape Analysis

The samples prepared above (p67_{phox}, p47_{phox}, p40_{phox}, the binary complexes p67_{phox}-p47_{phox} and p67_{phox}-p40_{phox}, and the ternary complex p67_{phox}-p47_{phox}-p40_{phox}) were subjected to SAXS analyses. SAXS data were collected at protein concentrations from 1 mg/ml to 10 mg/ml in the Q range 0.015 to 0.443 Å⁻¹ to assess the effects of protein concentration on the structural parameters. All measurements were performed using a SAXS diffractometer in BL–10C beam line installed at the Photon Factory in Tsukuba, Japan, as previously described [29]. The wave-length of the X-ray was 1.488 Å. The sample cell had a volume of 50 µl and a 1-mm path length with quartz windows. The data acquisition time was 600 s for each measurement. Protein scattering was determined by subtracting the solvent scattering as the background trace [30, 32, 33]. The forward scattering I(0) and the radius of gyration Rg were evaluated from the Guinier approximation [34] and also using the program GNOM [35]. The distance distribution function, P(r), was calculated from the scattering data by the indirect Fourier transformation method using GNOM [36]. The values of Rg were stable from the lowest to the highest concentration. The relative molecular weight of the scattering species was estimated using I(0), obtained from the scattering data for bovine carbonic anhydrase and bovine serum albumin (BSA) as standard proteins.

Low-resolution models of p67_{phox} were generated from experimental scattering data by the ab initio shape determination programs DAMMIN [36] and GASBOR [37]. The scattering data in the range of the momentum transfer with a Q value of 0.02–0.30 Å⁻¹ for DAMMIN and of 0.02–0.40 Å⁻¹ for GASBOR were used for the fit. Ten independent models were reconstructed, which were superimposed and averaged using the programs SUPCOMB [38] and DAMAVER [39]. The averaged shapes were filtered based on the expected molecular weight of the protein using the program DAMFILT [39].

Activation of the Phagocyte NADPH Oxidase in COS-7 and CHO Cells

Experiments for activation of gp91_{phox} in COS-7 and CHO cells were performed as previously described [23, 40, 41]. COS-7 cells, endogenously expressing p22_{phox} and Rac1, and CHO cells, endogenously expressing Rac1 but not p22_{phox}, were transfected using LipofectAMINE (Invitrogen) with the following plasmids: 0.5 µg of pcDNA3-gp91_{phox}, 0.1 µg of pEF-BOS encoding the wild-type or indicated mutant Myc–p67_{phox}; and 0.5 µg of pEF-BOS-Flag–p47_{phox}. CHO cells, endogenously expressing Rac1 but not p22_{phox}, were transfected using FuGENE6 (Roche Diagnostics) with the following plasmids: 0.5 µg of pcDNA3-gp91_{phox}, 0.1 µg of pEF-BOS-p22_{phox}; 0.025 µg of pEF-BOS encoding the wild-type or indicated mutant Myc–p67_{phox}; and 0.5 µg of pEF-BOS-Flag–p47_{phox}. Total lysates of transfected cells were used for estimation of expression of Myc–p67_{phox} and Flag–p47_{phox}. The lysates were subjected to SDS-PAGE, transferred to a polyvinylidene difluoride membrane (Millipore), and probed with an anti-Myc (Roche Diagnostics) or anti-Flag (Sigma) monoclonal antibody. The blots were developed using ECL plus (GE Healthcare Biosciences) for visualization of the antibodies, as previously described [23, 40, 41].

Transfected cells were cultured for 24 h, and suspended in Hapes-buffered saline (120 mM NaCl, 5 mM KCl, 5 mM glucose, 1 mM MgCl₂, 1 mM CaCl₂, and 17 mM Hapes, pH 7.4) at a concentration of 1×10⁶ cells/ml. The superoxide-producing activity of transfected cells (1.0 ml) was determined by superoxide dismutase (SOD)-inhibitable chemiluminescence with an enhancer-containing luminol-based detection system (DIOGENES; National Diagnostics), as previously described [23, 40, 41]. After the addition of the enhanced luminol-based substrate DIOGENES, the chemiluminescence was assayed at 37°C in the presence or absence of 200 ng/ml of PMA (Research Biochemicals International) using a luminometer (Auto Lumat LB953; EG&G Berthold).

Activation of the Phagocyte NADPH Oxidase in K562 Cells

Parent K562 cells endogenously expressed both Rac and p22_{phox}. The K562 cells stably expressing gp91_{phox} and p47_{phox}, designated as K562-gp91_{phox}-p47_{phox} cells, were prepared as previously described [12, 19, 21]. K562-gp91_{phox}-p47_{phox} cells were transfected by electroporation with the following plasmids: 10 µg of pEF-BOS encoding the wild-type or indicated mutant Myc–p67_{phox}; 15 µg of pEF-BOS-Flag–p40_{phox} (wt) or the pEF-BOS vector. The cells (5 × 10⁶ cells/ml) were electroporated in

Domain Organization of p67_{phox}
the presence of the plasmids at 170 V, 1.070 μF using a Gene Pulser (Bio-Rad). After culture for 48 h, cells (1 × 10^6 cells) were incubated for 5 min at 37 °C, and then stimulated with or without PMA (200 ng/ml). Superoxide production by the cells was determined by SOD-inhibitable chemiluminescence with DIO-

Results and Discussion

SAXS Analysis of p67phox- and p67phox-Containing Complexes

To directly elucidate the conformation of p67phox- and p67phox-containing complexes in solution, we performed SAXS experiments using the p67phox monomer, the p67phox-p47phox and p67phox-p40phox binary complexes, as well as the p67phox-p47phox-p40phox ternary complex. Analysis of the distance distribution function, P(r), revealed that p67phox has a molecular dimension with a Dmax of 145 Å and an Rg of 48 Å, showing that the average molecular size of p67phox is much larger than those of globular proteins with a similar molecular mass; for example, BSA with a molecular mass of 65 kDa has an Rg value of about 30 Å. The P(r) shows a curve with 2 broad overlapped peaks located at nearly 30 Å and 50 Å (fig. 2a), indicating that p67phox has a nonglobular structure, since the P(r) of a spherical molecule has a single peak with Gaussian-shape distribution [35]. In addition, the spread of the distribution curve for p67phox extends to 145 Å (fig. 2a). This value is far from the molecular dimension of the globular protein BSA (approx. 85 Å) but similar to that of fully elongated p67phox, which can be estimated at approximately 160 Å on the basis of the dimensions of the four domains of p67phox deposited in the protein data bank: approximately 60 Å for the TPR domain (PDB: 1WMS), approximately 30 Å for the SH3(N) domain (PDB: 2DMO), approximately 40 Å for the PDI domain (PDB: 1OEY) and approximately 30 Å for the SH3(C) domain (PDB: 1K4U). Hence, p67phox appears to exist as an elongated molecule in solution.

The relative molecular masses of the p67phox-p47phox and p67phox-p40phox complexes were calculated by Guinier approximations to be 106 and 99 kDa, which are in good agreement with those calculated from the amino acid sequences (108 kDa and 106 kDa) at a stoichiometry of 1:1 for the binary complexes (table 1). The P(r) of the p67phox-p47phox complex displays a curve with two broad peaks located at nearly 35 and 55 Å, and the curve extends to 180 Å (fig. 2b and c). The finding indicates that this complex adopts an elongated conformation and that p67phox makes a more contribution to the conformation than p47phox; the molecular dimensions of p67phox and p47phox are 145 and 90 Å, respectively (table 1). On the other hand, the P(r) of the p67phox-p40phox complex exhibits a curve extended to 150 Å with a single peak at 45 Å. The value of the molecular dimension is close to that for the p67phox monomer of 145 Å (fig. 2a), implying that p40phox marginally contributes to the maximum dimension of the binary complex.
Domain Organization of p67phox and p47phox

- p67phox
- p67phox-p47phox

Figure 1:

- Panels a and b: Radial distribution functions (RDFs) of p67phox and p67phox-p47phox, respectively, showing the distribution of distances between atoms within the proteins.

- Panels c and d: Pair correlation functions (PCFs) of p67phox and p67phox-p47phox, respectively, indicating the probability of finding another atom at a given distance from a reference atom.

Q (Å⁻¹)

- **P(r)**

log I(Q)

- **r (Å)**

The graphs illustrate the structural organization and interactions within these proteins, which are crucial for understanding their function in innate immunity.
We next evaluated the molecular shape of the p67_{phox}-p47_{phox}-p40_{phox} complex. As shown in figure 2d, the \(P(r) \) of the ternary complex represents characteristics of an elongated structure with a \(D_{\text{max}} \) of 175 Å and an \(R_g \) of 58.3 Å. The molecular mass was estimated by Guinire analysis to be 149 kDa, which is consistent with the value deduced from the amino acid sequences of the proteins in the 1:1:1 complex (table 1). The dimension of this ternary complex (175 Å) is similar to that of the p67_{phox}-p47_{phox} binary complex, suggesting that p67_{phox} as well as p47_{phox}, but not p40_{phox}, is involved in the elongated structure. Taken together, p67_{phox} likely adopts an elongated conformation when it exists not only as a monomer but also as the trimer with p47_{phox} and p40_{phox}.

Molecular Modeling of p67_{phox}

For visualization of the molecular shape information held in our experimental SAXS data, we reconstructed low-resolution molecular envelope models of p67_{phox} by ab initio molecular shape analyses, using two approaches implemented by the DAMMIN [34] and GASBOR programs [35]. The averaged consensus models are shown in figure 3. Both ab initio calculations of molecular envelopes for p67_{phox} consistently yield an elongated and non-symmetrical conformation, comprising a large globular region and multiple smaller bumps in an extended arrangement of the molecular envelope. These structural elements may be derived from the TPR, SH3(N), PBI and SH3(C) domains of p67_{phox}. The model suggests that there exist no or little apparent interactions between the four domains.

Positional Effect of the N-Terminal SH3 Domain of p67_{phox} on Phagocyte Oxidase Activation

As shown by the present SAXS analyses, p67_{phox} appears to be in an extended form without significant associations between its protein-binding modules. It is thus likely that bindings of p67_{phox} to its target proteins are not regulated via interdomain interactions. However, it is unknown whether the activity of p67_{phox} depends on the positions of the domains or is independent of the domain organization. To address this question, we tested the following mutant p67_{phox} proteins with a distinct domain arrangement: p67_{phox}-mut1, in which the PBI domain follows the C-terminal SH3 domain; p67_{phox}-mut2, which harbors the PBI domain preceding the N-terminal SH3 domain; p67_{phox}-mut3, with the N- and C-terminal SH3 domains being interchanged (fig. 4a).

We have previously shown that the p67_{phox} N-terminal SH3 domain, SH3(N), positively regulates activation of the phagocyte NADPH oxidase, which could be mediated via an interaction with gp91_{phox} [23]. When SH3(N) was swapped with the PBI domain (p67_{phox}-mut2) or with SH3(C) (p67_{phox}-mut3), the ability of p67_{phox} to activate the oxidase was significantly decreased (fig. 4b), suggesting that SH3(N) fails to function at the positions of the

Table 1. Structural parameter obtained from SAXS

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of amino acids</th>
<th>(M_r) (calc.) kDa</th>
<th>(M_r) (Guinier) kDa</th>
<th>(R_g) (Guinier) Å</th>
<th>(R_g) (GNOM) Å</th>
<th>(D_{\text{max}}) (GNOM) Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>p67<sub>phox</sub></td>
<td>540</td>
<td>61.3</td>
<td>58.5 (11.8)</td>
<td>45.2 (1.5)</td>
<td>47.6 (1.9)</td>
<td>145</td>
</tr>
<tr>
<td>p47<sub>phox</sub></td>
<td>407</td>
<td>46.6</td>
<td>38.9 (7.7)</td>
<td>31.1 (0.8)</td>
<td>30.6 (0.7)</td>
<td>90</td>
</tr>
<tr>
<td>p40<sub>phox</sub></td>
<td>341</td>
<td>39.2</td>
<td>47.8 (4.8)</td>
<td>28.5 (0.4)</td>
<td>27.7 (0.5)</td>
<td>85</td>
</tr>
<tr>
<td>p67<sub>phox</sub>-p47<sub>phox</sub></td>
<td>947</td>
<td>107.9</td>
<td>105.9 (4.5)</td>
<td>58.0 (1.8)</td>
<td>57.1 (1.8)</td>
<td>180</td>
</tr>
<tr>
<td>p67<sub>phox</sub>-p40<sub>phox</sub></td>
<td>881</td>
<td>100.4</td>
<td>99.4 (6.0)</td>
<td>48.5 (1.0)</td>
<td>48.5 (1.3)</td>
<td>145</td>
</tr>
<tr>
<td>p67<sub>phox</sub>-p47<sub>phox</sub>-p40<sub>phox</sub></td>
<td>1,288</td>
<td>147.1</td>
<td>149.2 (6.3)</td>
<td>57.6 (1.3)</td>
<td>57.6 (1.1)</td>
<td>170</td>
</tr>
</tbody>
</table>

The values in parentheses indicate SD of the structural parameters estimated by SAXS analysis.

1 Values are calculated including the C-terminal 6-histidine tags.

2 \(M_r \) (calc.) and \(M_r \) (Guinier) are molecular mass calculated from the amino acid sequence and estimated from the scattering data according to Guinier approximation, respectively.

3 \(R_g \) (Guinier) and \(R_g \) (GNOM) are the radius of gyration, derived from the scattering data using Guinier approximation and the program GNOM, respectively.

4 \(D_{\text{max}} \) is a maximum dimension.

5 Data from Honbou et al. [26].
PB1 and SH3(C). The idea is supported by the findings that oxidase activation by p67phox-mut2 and p67phox-mut3 was not affected by truncation of SH3(N) (fig. 4c); on the other hand, deletion of SH3(N) from p67phox (wt) inhibited superoxide production by 40–50% in the absence of SH3(N) (fig. 4b and c), which is consistent with the previous observation [23]. Hence, the position of SH3(N) appears to be crucial for its role in activation of the phagocyte NADPH oxidase.

Positional Effect of the PB1 Domain of p67phox on Phagocyte Oxidase Activation

The oxidase activator p67phox tightly associates with p40phox, in which the PB1 domain of p67phox directly interacts with that of p40phox [12, 15, 16]. We have previously shown that, via the PB1–PB1 interaction, p40phox enhances membrane translocation of p67phox and facilitates activation of the phagocyte NADPH oxidase [12]. p67phox-mut2, in which the PB1 domain precedes SH3(N),
was as active as p67_{phox} (wt) in the absence of p40_{phox} (fig. 5a). Intriguingly, p40_{phox} decreased oxidase activation by p67_{phox-mut2} to 35% of that without p40_{phox} and 20% of that by the wild-type protein with p40_{phox}. The inhibition was restored when a mutant p40_{phox} carrying the D289A substitution, leading to a defective binding to p67_{phox} [12], was expressed instead of the wild-type one.

On the other hand, p40_{phox} enhanced oxidase activation by p67_{phox-mut1} or p67_{phox-mut3} (fig. 5b) as well as by the wild-type protein (fig. 5a). The PB1 domain is thus required to be present C-terminal to the position of SH3(N); otherwise, p40_{phox} binding to p67_{phox} inhibits activation of the phagocyte oxidase.

Fig. 4. Positional effect of p67_{phox}-SH3(N) on NADPH oxidase activation. **a** Structure of mutant p67_{phox} proteins with swapped domains. **b, c** COS-7 cells were transfected with the following plasmids: pcDNA3-gp91_{phox}, pEF-BOS-Flag-p47_{phox}, and pEF-BOS encoding the wild-type or indicated mutant Myc-p67_{phox}. Cells were incubated for 5 min at 37 °C, and then stimulated with PMA (200 ng/ml). Chemiluminescence change was continuously monitored with DIOGENES. Each graph represents the mean ± SD of the chemiluminescence values integrated for 10 min, which were obtained from three independent transfections. * p < 0.01 versus p67_{phox} (wt); † not significant versus p67_{phox} (wt) (b). * p < 0.01 versus p67_{phox} (wt); † not significant versus p67_{phox-mut2} or p67_{phox-mut3} (c). Protein levels of p67_{phox} and p47_{phox} were analyzed by immunoblot, as described in Materials and Methods.
Positional Effect of the p67phox Domains on p67phox-p47phox-p40phox Complex Formation

The finding that oxidase activation by p67phox-mut2, in which the SH3(N) and PB1 domains are swapped, is inhibited by binding to p40phox (fig. 5a) raised the possibility that the mutant protein is incapable of forming the p67phox-p47phox-p40phox complex. To address this question, we tested the ability to form the p67phox-p47phox-p40phox complex using co-immunoprecipitation analysis. As shown in figure 6a, p67phox-mut2 as well as p67phox-mut1 and p67phox-mut3 was fully complexed with both p47phox and p40phox. Thus, inhibition of oxidase activation by p40phox binding to p67phox-mut2 appears to occur at a step after formation of the ternary complex. Although the precise mechanism underlying the inhibition is presently unknown, it is unlikely that p40phox binding to p67phox-mut2 prevents the association of p67phox with Rac, a process required for oxidase activation [21]. This is because p67phox-mut2 as well as p67phox-mut1 and p67phox-mut3 interacted with Rac to the same extent as the wild-type protein in the presence of p40phox and p47phox (fig. 6b).

Positional Effect of the C-terminal SH3 Domain of p67phox on Phagocyte Oxidase Activation

As shown in figure 4a, p67phox-mut1 expressed in COS-7 cells was almost as active as the wild-type protein in activation of the phagocyte NADPH oxidase, although this mutant protein was slightly but significantly less active in K562 cells (fig. 5a). It is thus likely that p67phox-SH3(C) is able to function at the position of the PB1 domain. On the other hand, p67phox-mut3, in which SH3(C) is interchanged with SH3(N), was about 3 times less effective in oxidase activation than p67phox (wt) (fig. 4c), raising the possibility that SH3(C) does not play a role sufficiently at the position of SH3(N). In contrast, however,
p67phox-mut4 [a mutant protein that contains SH3(C) at the position of SH3(N) but lacks the SH3(N) and PB1 domains; fig. 7a] activated the phagocyte oxidase to the same or even higher extent than p67phox (wt) (fig. 7b and c). The activation was abrogated by the W494R substitution in SH3(C) (fig. 7a), a mutation leading to a loss of the interaction with p47phox [19], confirming that p67phox-mut4 serves in cooperation with p47phox (fig. 7b and c). These findings indicate that SH3(C) is capable of fully functioning at the position of SH3(N), although the reason for the discrepancy between p67phox-mut3 and p67phox-mut4 is presently unknown. Taken together, the C-terminal SH3 domain of p67phox properly contributes to oxidase activation in a manner independent of its position.

Concluding Remarks

In the present study, using SAXS analysis, we show that p67phox exists as a monomer that adopts an elongated conformation (fig. 2, 3). The conclusion is consistent with the previous finding obtained from analytical ultracentrifugation analyses [20]. In addition, the present model deduced from SAXS data suggests that no or little apparent interdomain associations occur in p67phox (fig. 3). This explains well the previous finding that Rac binding to the TPR domain of p67phox is not affected by the presence of the reminder of the protein [20, 42]. Similarly, neither p40phox association with the PB1 domain nor p47phox interaction with SH3(C) is known to be inhibited by the other regions of p67phox [19, 43]. Thus, the protein-interaction domains in p67phox appear to be normally in a state accessible to their target proteins. In addition, the formation of the ternary complex and the interaction of p67phox with Rac are both independent of the positions of the PB1 and SH3 domains (fig. 6). Such an elongated, ‘beads-on-a-string’ structure is also found in the tyrosine kinase Btk [44]. Like Src and Abl kinases, Btk contains a conserved cassette formed by SH3, SH2 and protein kinase domains, but differs from them by the presence of an N-terminal PH and Tec-homology domains; Btk displays an extended conformation where domains are arranged in a linear manner with little or no interactions between them [44]. This is in contrast with the structures...
lates oxidase activation only when it is present at the correct position (fig. 4). This SH3 domain is not required for oxidase activation but enhances superoxide production probably by increasing the affinity of the p67_{phox}-containing complex for gp91_{phox} [23]. The mechanism whereby SH3(N) functions may explain the reason why it must be positioned close to the p67_{phox} N-terminal domain that is required for oxidase activation (fig. 1). Rac binding to

Fig. 7. Positional effect of p67_{phox}-SH3(C) on NADPH oxidase activation. a Structure of mutant p67_{phox} proteins lacking the N-terminal SH3 and PB1 domains. b CHO cells were transfected with the following plasmids: pcDNA3-gp91_{phox}; pEF-BOS-p22_{phox}; pEF-BOS-Flag-p47_{phox}; and pEF-BOS encoding the wild-type or indicated Myc-p67_{phox}. c K562-gp91_{phox}-p47_{phox} cells were transfected with pEF-BOS encoding the wild-type or indicated mutant p67_{phox} protein fused to Myc. Cells were incubated for 5 min at 37 °C, and then stimulated with PMA (200 ng/ml). Chemiluminescence change was continuously monitored with DIOGENES. Each graph represents the mean ± SD of the chemiluminescence values integrated for 10 min, which were obtained from three independent transfections. Protein levels of p67_{phox} and p47_{phox} were analyzed by immunoblot, as described in Materials and Methods.

of Src- and Abl-family kinases, in which SH3 and SH2 domains turn inward and lock the tyrosine kinase domain in the auto-inhibited state via intramolecular interactions [45].

The present study also demonstrates that the order of the domains in p67_{phox} is important at a step after ternary complex formation in activation of the phagocyte oxidase. The N-terminal SH3 domain positively regulates oxidase activation only when it is present at the correct position (fig. 4). This SH3 domain is not required for oxidase activation but enhances superoxide production probably by increasing the affinity of the p67_{phox}-containing complex for gp91_{phox} [23]. The mechanism whereby SH3(N) functions may explain the reason why it must be positioned close to the p67_{phox} N-terminal domain that is required for oxidase activation (fig. 1). Rac binding to
the TPR domain in the N-terminus is considered to induce a conformational change of p67phox, which likely allows a region between the TPR and SH3(N) domains to interact with gp91phox, leading to superoxide production [3–9]. The present study also shows that the PBI domain placed at the position of SH3(N) does not affect formation of the ternary complex or Rac binding to p67phox (fig. 6), but inhibits oxidase activation by interacting with p40phox (fig. 5), whereas SH3(C) is capable of functioning even at the SH3(N) or PBI positions (fig. 4, 7). Binding of p40phox to the position of SH3(N), but not binding of p47phox to the same position, may interfere with the interaction of the p67phox N-terminal domain with gp91phox. The significance of the domain organization in human p67phox, as shown in the present study, is consistent with the fact that the order of the domains in the oxidase activator is completely preserved during evolution [9].

Acknowledgements

This work was supported in part by Grants-in-Aid for the Scientific Research and Targeted Research Program (TPPR) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and by CREST of the Japan Science and Technology Agency. We are also grateful to Natsuko Mori-naga (Kyushu University), Yohko Kage (Kyushu University) and Namiko Kubo (Kyushu University) for technical assistance, and to Minako Nishino (Kyushu University) for secretarial assistance.

References

7. Dagher MC, Pick E: Opening the black box: the TPR domain in the N-terminus is considered to induce a conformational change of p67phox, which likely allows a region between the TPR and SH3(N) domains to interact with gp91phox, leading to superoxide production [3–9].
Domain Organization of p67phox

