Methionine Sulfoxide Reductases Protect against Oxidative Stress in *Staphylococcus aureus* Encountering Exogenous Oxidants and Human Neutrophils

Yun Yun Pang\(^a\) Jamie Schwartz\(^a\) Sarah Bloomberg\(^a\) Jeffrey M. Boyd\(^d\)
Alexander R. Horswill\(^b\) William M. Nauseef\(^a–c\)

\(^a\)Inflammation Program, Department of Medicine, and \(^b\)Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and \(^c\)Veterans Administration Medical Center, Iowa City, Iowa, and
\(^d\)Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, N.J., USA

Key Words
Methionine sulfoxide reductase · *Staphylococcus aureus* · Neutrophils · Oxidative stress

Abstract
To establish infection successfully, *Staphylococcus aureus* must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence on the fate of *S. aureus* exposed to oxidants or PMN. We evaluated a mutant deficient in *msrA1* and *msrB* for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of *msrA1* in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of *msr* was studied by screening a library of two-component regulatory system (TCS) mutants for altered *msr* responses. Relative to the wild-type bacteria, bacteria deficient in Msr were more susceptible to oxidants and PMN. Upregulation of staphylococcal *msrA1* occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of *msrA1*. Modulation of *msrA1* within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis.

Introduction

Staphylococcus aureus is an important human pathogen that is responsible for a broad spectrum of infections, ranging from mild cellulitis to life-threatening endovascular disease. The rising prevalence of antibiotic resistance among staphylococci exacerbates the clinical challenges imposed by staphylococcal disease.

Optimal host defense relies on the capacity of polymorphonuclear neutrophils (PMN) to phagocytose and kill *S. aureus* with antimicrobial agents delivered to or generated in phagosomes. Especially potent among phagosomal oxidants is hypochlorous acid (HOCl), which is generated by the myeloperoxidase-hydrogen peroxide (MPO-H\(_2\)O\(_2\))-chloride system [1]. PMN-derived oxidants readily damage bacterial proteins, lipids and DNA. Methionine is

Y.Y.P. and J.S. contributed equally to this article.
highly susceptible to oxidation, and oxidation in proteins can disrupt their normal function [2]. Methionine can be oxidized to either of two enantiomers, methionine-S-sulf oxide and methionine-R-sulfoxide, and each can be selectively repaired by a specific class of methionine sulfoxide reductase (Msr); MsrA and MsrB repair the S and R stereoisomers, respectively. The *S. aureus* genome harbors three *msrA* genes (*msrA1*, *msrA2* and *msrA3*) and a single *msrB* [3]. The adjacent *msrA1* and *msrB* genes are cotranscribed and encode enzymes that provide the majority of the Msr activity in *S. aureus* [4, 5].

To persist and subsequently establish infection, invading bacteria need to evade, resist or tolerate insults inflicted by PMN. Given the role of Msr in the defense against physiological oxidative stress [6], we speculated that *S. aureus* might employ these enzymes to repair and thus limit damage caused by PMN-derived oxidants, thereby providing a mechanism to survive within phagosomes.

In this study, we investigated the contribution of Msr to the fate of *S. aureus* exposed to oxidants and to human PMN. We also explored the regulation of *msr* in *S. aureus* ingested by PMN and the role of staphylococcal two-component regulatory systems (TCS) in regulating the *msrA1* response.

Methods

Bacterial Strains and Culture Conditions

The *S. aureus* strains used in this study were constructed in the community-associated *S. aureus* USA300 LAC strain that is cured of the native plasmid pUSA03 which confers erythromycin resistance [7] unless otherwise indicated. *S. aureus* was cultured in tryptic soy broth (TSB; BD Biosciences) at 37 °C with shaking at 200 rpm. For strains harboring empty vector or complementation plasmids, the media was supplemented with 10 μg/ml of chloramphenicol (Sigma-Aldrich; table 1). To obtain stationary phase organisms, bacteria were inoculated from glycerol stocks into TSB.
and grown for 16–18 h. For mid-log phase bacteria, the stationary bacteria were subcultured for approximately 2.5 h from a starting optical density at 550 nm (OD_{550}) of 0.05. In experiments involving PMN, 0.01% of human serum albumin (Talecris Biotherapeutics) was added to the subculture media. For experiments measuring msrA expression in the presence of both oxidants and vancomycin, an overnight starter culture of S. aureus grown in TSB was washed once with HEPES-buffered Hank's balanced salt solution (HBSS) before being used to inoculate minimal media (7.6 mM Na_2HPO_4, 33 mM KH_2PO_4, 60 mM K_2HPO_4, 11 mM NaCl, 3 mM NH_4SO_4, 0.5 mM MgSO_4, 0.5 μg/ml nicotinamide, 0.5 μg/ml panthothenate, 3 ng/ml biotin, and 25 μg/ml of each of the following amino acids: Gly, Val, Leu, Thr, Phe, Tyr, Lys, Met, Pro, Arg, and His). The bacteria were then cultured between 4 and 6 h before being treated.

Construction of ΔmsrA1B, ΔvraSR and TCS Mutants
S. aureus strains with mutations in the vraRS [7], agr [8] and sacRS [9]. TCS were also available as part of laboratory collections [7]. To create the complementing plasmid and strains, msrA1B and vraSR genes were amplified by PCR and cloned into the multicycopy plasmids pCM28 [11] or pEPSA5 [12]. All clones were passed through RN4220 [10] and subsequently transduced into the appropriate strains using bacteriophage 80a [14]. For oligonucleotide (Integrated DNA Technologies) sequences, refer to table 1. See online supplementary information for further details (for all online suppl. material, see www.karger.com/doi/10.1159/000355915).

Table 2. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence 5’ to 3’</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>gapdh primer1</td>
<td>TACACAAGACGCACCTCACAGA</td>
<td>real-time PCR</td>
</tr>
<tr>
<td>gapdh primer 2</td>
<td>ACCGGTGGATGTTGGAGGATGTTT</td>
<td>real-time PCR</td>
</tr>
<tr>
<td>msrA1 primer 1</td>
<td>TCCAGGCACTAAGTGTCAGTG</td>
<td>real-time PCR</td>
</tr>
<tr>
<td>msrA1 primer 2</td>
<td>TTGGCAGATGACTGCACTAAGTG</td>
<td>real-time PCR</td>
</tr>
<tr>
<td>vraS primer 1</td>
<td>CGGCAAGATFAGTGTCATACGTC</td>
<td>real-time PCR</td>
</tr>
<tr>
<td>vraS primer 2</td>
<td>TAATCAGGAATCTGGAACGTTTTTC</td>
<td>cloning</td>
</tr>
<tr>
<td>msrA1_5EcoRI</td>
<td>GGAGAATTCCCGGAATTACATTAAATTAAGG</td>
<td>cloning</td>
</tr>
<tr>
<td>msrA1_up3Mhel</td>
<td>ACGGCTGTTACCGCTAGCCTAAGATCATCCTTATTACTTATCTAATTAT</td>
<td>cloning</td>
</tr>
<tr>
<td>msrB_down5mlul</td>
<td>GCTAGCGGTACCGCGTCGCCAATCACAATATAACATCAAATAGACACC</td>
<td>cloning</td>
</tr>
<tr>
<td>msrB_down3BamHI</td>
<td>CCGGATCCACATCACTACTTTGGTTCACCTTAAATCAGACGC</td>
<td>cloning</td>
</tr>
<tr>
<td>msrA_veri5</td>
<td>GAGAAAACATTAAATTATTTGTAG</td>
<td>verification</td>
</tr>
<tr>
<td>msrB_veri3</td>
<td>CATTTGCACTACCATCACG</td>
<td>verification</td>
</tr>
<tr>
<td>msrA1B_comp5EcoRI</td>
<td>GGGGAATTCCGGGCAATTGAATCAATTAATTAAAGGTGGCAG</td>
<td>cloning</td>
</tr>
<tr>
<td>msrA1B_comp3BamHI</td>
<td>GGGGAATTCGCGAAATGATGATGATGATGAT</td>
<td>cloning</td>
</tr>
<tr>
<td>1865up3Fuse</td>
<td>ACCGGGTGTACCGCTAGCCTAAGATCATCCTTATTACTTATCTAATTAT</td>
<td>cloning</td>
</tr>
<tr>
<td>1865down5Fuse</td>
<td>GCTAGCGGTACCGCGTCGCCAATCACAATATAACATCAAATAGACACC</td>
<td>cloning</td>
</tr>
<tr>
<td>1865down3Sal1865veri5</td>
<td>CCCGCGATCCGGTAAATGGAATCTGGAACGTTTTTC</td>
<td>cloning</td>
</tr>
<tr>
<td>1865comp5BamHI</td>
<td>CCGGATCCACATCACTACTTTGGTTCACCTTAAATCAGACGC</td>
<td>cloning</td>
</tr>
<tr>
<td>1865comp3Sal1865veri5</td>
<td>CCCGCGATCCGGTAAATGGAATCTGGAACGTTTTTC</td>
<td>cloning</td>
</tr>
</tbody>
</table>

Neutrophil Isolation
Informed consent was obtained from each individual following a protocol approved by the institutional review board for human subjects at the University of Iowa. Peripheral blood was drawn from normal healthy volunteers or individuals with X-linked chronic granulomatous disease (CGD), and PMN were purified as previously described [15].

Feeding PMN to S. aureus and PMN Killing Assay
Mid-log phase bacteria were pelleted for 5 min and resuspended in 20 mM HEPES-buffered HBSS containing Ca^{2+} and Mg^{2+}. The OD_{550} of the suspension was measured and this was converted to colony-forming units (CFU)/milliliter: an OD_{550} reading of 1.0 was equivalent to 3 × 10^8 CFU/ml. Bacteria were used immediately or held on ice. Bacteria were opsonized by incubation at 37°C for 20 min in the presence of 10% pooled human serum. Opsonized bacteria were fed to PMN or PMN pretreated with 10 μM diphenylene iodonium (DPI) at the desired multiplicity of infection (MOI) and tumbled end over end at 37°C to allow phagocytosis to proceed. The PMN were then pelleted at 380 g for 5 min, and the extracellular bacteria were aspirated away. The cell pellets were resuspended to the original volume with 20 mM HEPES-buffered HBSS. These samples were processed to quantitate CFU to assess PMN-mediated killing or prepared for gene expression experiments. For PMN killing experiments, a 50-μl sample of cell suspension was removed at the 0 min (time 0). The remaining samples were tumbled at 37°C, and 50-μl aliquots were removed at specified time points. For viability testing, the 50-μl samples were diluted and incubated with 2.5 ml of pH 11 water for 5 min to lyse the PMN. These samples were vortexed and serially diluted.
into saline. 10 μl of each diluted sample was spotted onto tryptic soy agar plates in at least triplicate. After 16 h of growth at 37°C, the CFU were enumerated. From these, the CFU in the total PMN suspension for each sample were calculated. To assess the viability at each time point, the total calculated CFU for each strain were expressed as a percentage of the starting CFU for that strain. The starting CFU for each strain were taken as the CFU recovered from bacteria fed to DPI-treated PMN at time 0, in which there was minimal bacterial killing (data not shown). For gene expression experiments, the samples were tumbled at 37°C and at the desired time point, and the PMN that had ingested bacteria were pelleted, lysed and processed for real-time PCR analysis.

Real-Time PCR
RNA was extracted from bacteria or PMN-ingested bacteria as described previously [16]. cDNA was synthesized with AMV Reverse Transcriptase (Roche) and used as a template for real-time PCR. Reactions were conducted in PerfeCTa SYBR Green fast mix (Quanta Biosciences) with each primer at 200 nM. Expression of gapdh was used to normalize all the gene expression data as described previously [16]. The gapdh primers amplify S. aureus gapdh but do not amplify human gapdh (data not shown). After denaturation at 95°C for 30 s, the samples were cycled at 95°C for 15 s, then at 60°C for 30 s, for 40 cycles using the ABI 7000 system. For primer sequences, refer to table 2.

Bacterial Exposure to Oxidants
In experiments used to determine the susceptibility of bacteria to oxidents, S. aureus strains in the mid-log phase were resuspended in PBS to an OD550 of 0.250. Bacteria (0.5 ml volume) were either left untreated or treated with reagent grade H2O2 or HOCl (Sigma-Aldrich) at predetermined concentrations for 1 h at 37°C. Residual H2O2 was quenched by diluting samples 1:100 in PBS supplemented with catalase (1,300 U/ml; Sigma). Where HOCl generation (n = 3), as described in Dypbukt et al. [16]. The gapdh primers amplify S. aureus gapdh but do not amplify human gapdh (data not shown). After denaturation at 95°C for 30 s, the samples were cycled at 95°C for 15 s, then at 60°C for 30 s, for 40 cycles using the ABI 7000 system. For primer sequences, refer to table 2.

Bacterial Exposure to PMN Granule-Rich Extract
PMN were resuspended in cold relaxation buffer (RB; 10 mM PIPES, pH 7.3, 100 mM KCl, 3 mM NaCl, 3.5 mM MgCl2, 1.25 mM EGTA, 1 mM ATP) and sonicated on ice. Unbroken cells and nuclei were pelleted (200 g at 4°C for 5 min) and the supernatant was centrifuged at 10,000 g at 4°C for 20 min. The granule-enriched pellet was washed with ice-cold RB, spun at 10,000 g, resuspended in RB and lysed by freeze thawing 3 times in a methanol-dry ice bath. Granule proteins (107 cell equivalents) and 1.5 x 108 bacteria were incubated together in HBSS with calcium and magnesium for 30 min at 37°C.

Treatment with Cell Wall-Active Antibiotics
In experiments involving TCS mutants, S. aureus were diluted to an OD550 of 0.3 in TSB, in the presence or absence of 7 μg/ml of vancomycin or 25 μg/ml of d-cycloserine (Sigma-Aldrich), and shaken at 200 rpm for 1 h at 37°C.

Msr Activity Assay
Bacteria were washed with assay buffer (50 mM TRIS-HCl, pH 7.5, 145 mM NaCl), pelleted and resuspended into 200 μl of assay buffer. Bacteria were lysed with 25 μg of lyostaphin (Sigma-Aldrich) at 37°C for 10 min. Lysates were sonicated on ice and then incubated with 2 mM dapsyl-methionine sulfoxide (a mixture of the S and R enantiomers; Anaspec) and 20 mM DTT in assay buffer. After 1 h at 37°C, reactions were quenched with acetonitrile. Samples were analyzed on an LC-Dabsyl HPLC column (Supelco) to separate dapsyl-methionine sulfoxide from dapsyl-methionine. For further details, refer to the online supplementary material.

Statistical Analysis
Statistical analyses were performed using Graphpad Prism 5 software. Data were analyzed using paired t tests or one-way ANOVA with post-tests as indicated in the figure legends. p values <0.05 were considered to be statistically significant.

Results
Validation of the msrA1 msrB Deletion Mutant
To study the role of Msr in S. aureus, we created a mutant in the wild-type background in which both the msrA1 and msrB genes were deleted (ΔmsrA1B). The growth of the ΔmsrA1B double-mutant strain was indistinguishable from that of the parent strain (online suppl. fig. 1).

To assess the impact of msrA1B deletion on Msr activity in S. aureus, we studied bacteria in the absence or presence of vancomycin, since Msr expression increases upon exposure to cell wall antibiotics such as vancomycin [17]. In the absence of vancomycin, Msr activity in the wild-type lysates was low, and in ΔmsrA1B, it was below the level of detection (fig. 1). Msr activity was restored when both msrA1 and msrB were reintroduced into the ΔmsrA1B strain via a multicopy plasmid (pCM28). Upon treatment with vancomycin, Msr activity increased in the wild-type and the complemented deletion mutant (ΔmsrA1B with pCM28- msrA1B), but not in ΔmsrA1B. Thus, the data confirm that under these conditions, MsrA1 and MsrB support the majority of Msr activity in S. aureus, which was eliminated in our msrA1B deletion mutant.

Susceptibility of Wild-Type and msr Mutants to Oxidants and PMN
Reasoning that the capacity to repair oxidant-mediated damage by Msr would provide a survival advantage, we
were equally susceptible to killing by H\textsubscript{2}O\textsubscript{2}, suggesting of H\textsubscript{2}O\textsubscript{2} was likewise better than that of the ΔmsrA1B phagosomes.

Continuously and better mirrors conditions that exist within chloride. The latter system generates toxic oxidants containing HOCl or a HOCl-generating system (MPO-H\textsubscript{2}O\textsubscript{2}-

dant HOCl, we subjected vulnerable to damage by the physiologically relevant oxidant. At higher concentrations of H\textsubscript{2}O\textsubscript{2} (50, 75 and 100 m\textsubscript{M}), the viability of the wild-type mutant was greater than that of ΔmsrA1B strains also exhibited a significant difference in survival at the high end of concentrations of HOCl produced (p < 0.05; fig. 2c).

Given that Msr can influence the susceptibility of wild-type \textit{S. aureus} to the antimicrobial effects of H\textsubscript{2}O\textsubscript{2} and HOCl, oxidants that are generated by activated PMN, we reasoned that Msr-deficient bacteria would be more vulnerable to PMN killing. We fed opsonized wild-type, ΔmsrA1B and complemented mutants to PMN for 10 min to allow maximum ingestion. Subsequently, extracellular bacteria were removed and the fate of ingested \textit{S. aureus} assessed immediately (time 0) and after 30 and 60 min (fig. 2d). Because PMN begin to kill bacteria soon after the ingestion of bacteria and during the 10 min that are allowed for phagocytosis to occur (data not shown), we measured in parallel the viability of bacteria fed to DPI-treated PMN. The pharmacological inhibition of the NADPH oxidase by DPI [22] ensured that minimal killing of bacteria was achieved before 0, thus providing us with the total number of ingested bacteria at the start of the time course. To quantitate PMN killing of ingested \textit{S. aureus} over time, we enumerated viable bacteria recovered from normal PMN at each time point relative to the number of bacteria that was recovered at time 0 from the same strain fed to DPI-treated PMN. There was a reduction in the viability of all strains over time, but viable bacteria persisted even 1 h after ingestion. The ΔmsrA1B mutant was more susceptible to PMN killing than was the wild-type mutant at 30 and 60 min (p < 0.05).

Together, these data indicate that msrA1B contributed to the recovery of bacteria, not only after exposure to oxidants in isolation but also in the more complicated context of the PMN phagosome, where oxidants and granule proteins synergize to damage ingested targets.

\textit{msrA1} Induction in \textit{S. aureus} Exposed to PMN

To examine the expression of \textit{msr} in PMN-ingested bacteria, we recovered \textit{S. aureus} from PMN that had been fed bacteria. After 10 min of phagocytosis by PMN, extracellular bacteria were aspirated away and the time course initiated. At time 0, the level of \textit{msrA1} in the ingested bacteria was higher in organisms grown to the stationary phase relative to those grown to the mid-log phase (fig. 3a, b), with levels in both increasing further at 15 min and

Fig. 1. Msr activity in wild-type and \textit{msr} mutants. Conversion of dabsyl-methionine sulfoxide to dabsyl-methionine by lysates from wild-type, Δ\textit{msrA1B} and complemented Δ\textit{msrA1B} mutants were measured. Bacteria were treated with buffer (non-treated) or with vancomycin for 1 h. Data represent the mean ± SEM (n = 3 experiments).

The number of bacteria recovered after treatment with HOCl was expressed as a percentage of the initial number of bacteria prior to treatment (fig. 2b). Wild-type bacteria were more resistant to killing by 100 μM HOCl than was Δ\textit{msrA1B} (p < 0.01; fig. 2b). In the presence of the HOCl-generating system, the wild-type and Δ\textit{msrA1B} strains also exhibited a significant difference in survival at the high end of concentrations of HOCl produced (p < 0.05; fig. 2c).

Methionine Sulfoxide Reductases in \textit{S. aureus}

DOI: 10.1159/000355915
remaining high at 30 and 60 min. Incubation in the absence of PMN did not promote the expression of msrA1.

Given that Msr participates in cellular oxidant defense, we sought to determine whether oxidants generated within PMN phagosomes could drive msrA1 expression in ingested S. aureus. To that end, we compared msrA1 expression in S. aureus fed to normal PMN, PMN pretreated with DPI and PMN isolated from individuals with CGD, thereby providing PMN with pharmacologic or genetic absence of a functional phagocyte NADPH oxidase as a source of reactive oxygen species [23]. We detected high levels of msrA1 expression in S. aureus ingested by DPI-treated and CGD PMN, despite the absence of PMN-generated oxidants in those PMN. The magnitude of the induction was highest in bacteria ingested by DPI-treated PMN, followed by bacteria ingested by CGD PMN at 60 min (fig. 3c).

The Role of Oxidants in the Expression of msrA1

Given that the induction of msrA1 was more marked in PMN that were unable to produce oxidants, we studied whether oxidants may have a role in dampening the msrA1 response. We treated bacteria grown in minimal media with hydrogen peroxide (H2O2) (a) and hypochlorous acid (HOCl) (b) at the stated concentrations for 1 h. After 1 h at 37°C, the bacteria were plated and CFU enumerated after overnight growth. Data represent CFU/ml as a percentage of non-treated control for each strain at time 0. Data are the mean ± SEM (n = 6 experiments for a and b, and n = 3 experiments for c). At each concentration of the oxidant, a paired t test was used to compare the wild-type and ΔmsrA1B strains (* p < 0.05, ** p < 0.01).

Each bacterial strain was opsonized in pooled human serum and then fed to normal or DPI-treated PMN (MOI of 5:1). Ingested bacteria were recovered at the indicated time points and CFU were enumerated. At each time point, the viability of a strain is expressed as bacteria recovered from normal PMN as a percent of the same strain recovered from DPI-treated PMN at time 0. A paired t test was used to compare the wild-type and ΔmsrA1B strains at each time point (* p < 0.05). Data represent the mean ± SEM (n = 6 experiments).
media with vancomycin to induce msrA1 expression in the presence or absence of H₂O₂ or HOCl. Since HOCl is such a potent antimicrobial agent [1], much lower concentrations of HOCl (10 and 30 μM) were used relative to H₂O₂ (100 mM). At the tested concentrations, neither oxidant induced msrA1 expression when used alone, but vancomycin alone induced msrA1 more than 15-fold (fig. 4). In the presence of 10 or 30 μM of HOCl, the level of msrA1 induced by vancomycin was similar to that observed with vancomycin treatment alone. However, in the presence of 100 mM H₂O₂, the effect of vancomycin on msrA1 induction was markedly reduced (fig. 4). These data suggest that although oxidants did not directly induce msrA1, exposure to H₂O₂ but not to HOCl may limit the msrA1 response to stimuli arising from disruption of the bacterial cell wall. The observed decrease in vancomycin-induced msrA1 response in the presence of H₂O₂ did not reflect a global inhibition of transcription by oxidant treatment, as the expression of the H₂O₂-responsive gene alkyl hydroperoxide reductase was increased as expected [24] (online suppl. fig. 2).

Modulation of msrA1 by Staphylococcal TCS

We sought to determine which pathways in *S. aureus* participate in the detection and relay of signals that modulate the induction of msrA1. To sense and respond to the

Fig. 3. msrA1 expression in wild-type mutant ingested by normal and oxidase-deficient PMN. Serum-opsonized wild-type *S. aureus* in the mid-log (a) and stationary phase (b) were incubated alone or fed to PMN at an MOI of 1:1. At 0, 15, 30 and 60 min after phagocytosis, both ingested bacteria had recovered from PMN and bacteria incubated alone were prepared for real-time PCR. The expression of msrA1 was normalized to the expression of *gapdh*, and fold change in gene expression was relative to that in opsonized *S. aureus* prior to exposure to PMN. Data represent the mean ± SEM (n = 3 experiments). At each time point, a paired t test was used to analyze the difference between the ingested and non-ingested bacteria (*p < 0.05, **p < 0.01). c Opsonized mid-log phase wild-type *S. aureus* was ingested alone or fed at an MOI of 1:1 to suspended normal PMN, DPI-treated PMN or PMN derived from 1 of 4 unrelated individuals with X-linked CGD. Data represent the mean ± SEM (n = 4 experiments). Data after 60 min were analyzed by 1-way ANOVA followed by a Tukey post-test (*p < 0.05).

Fig. 4. msrA1 expression in *S. aureus* treated with oxidants and vancomycin (vanc). Wild-type *S. aureus* cultured in minimal media was treated with H₂O₂ or HOCl in the presence or absence of vancomycin (7 μg/ml) or with vancomycin alone for 1 h at 37°C. Bacteria were then assessed for msrA1 expression by real-time PCR and the data were normalized to *gapdh* expression. The data represent the fold change in msrA1 expression relative to the non-treated control (mean ± SEM, n = 6). A paired t test was used to compare sample conditions (*p < 0.05, **p < 0.01).
environment, prokaryotes utilize TCS [25], which typically consist of a cell surface histidine kinase as sensor and a cytoplasmic regulator to coordinate a transcriptional response. Only a few of the 16 TCS encoded in the S. aureus genome have been thoroughly characterized.

In a screen of a library of 15 nonessential TCS mutants for impaired msrA1 induction in response to vancomycin, deletion of vraSR resulted in loss of msrA1 induction under our experimental conditions (fig. 5a). To confirm the observed relationship between VraSR and

Fig. 5. Regulation of msrA1 by TCS. a Wild-type and mutant strains of S. aureus that were each deficient in one TCS were grown to the mid-log phase and treated with vancomycin for 1 h (table 1). TCS mutants are labeled in the graph with the gene locus or TCS name where known. The expression of msrA1 measured by real-time PCR was normalized to the expression of gapdh. Fold change in msrA1 is expressed relative to the untreated wild-type strain. The data represent the mean of two independent experiments. b Wild-type and ΔvraSR grown to the stationary phase were diluted to an OD$_{600}$ of 0.3 and then treated with buffer or with D-cycloserine. Msr activity in bacterial lysates was measured. Data shown represent the mean ± SEM (n = 4). A paired t test was performed between the cycloserine-treated wild-type and mutant samples (*p < 0.05). c Serum-opsonized wild-type, ΔvraSR and complemented ΔvraSR grown to the mid-log phase were fed to PMN (MOI of 1:1), and msrA1 expression in the ingested bacteria was measured and normalized to gapdh expression. Fold change is expressed relative to opsonized wild-type bacteria at time 0. Data represent the mean ± SEM (n = 9) and are analyzed by 1-way ANOVA with a Tukey post-test (*p < 0.05, **p < 0.001).
Msr, we quantitated Msr activity in the vraSR deletion mutant (ΔvraSR) and its isogenic wild-type mutant after treatment with a cell wall-active antibiotic structurally unrelated to vancomycin. We chose D-cycloserine for its ability to induce msrA1 and, more importantly, because its antistaphylococcal activity, in contrast to that of vancomycin, is unchanged in the absence of a functional VraSR system [26, 27]. At a concentration of D-cycloserine that modulated Msr activity with the least impact on viability (data not shown), D-cycloserine-treated wild-type mutants showed approximately 2-fold more Msr activity than did the non-treated controls. In contrast, treatment of ΔvraSR resulted in less Msr activity relative to the treated wild-type strain (p < 0.05; fig. 5b). These data suggested that VraSR contributed to the regulation of msrA1 in response to cell wall-active antibiotics.

To determine whether VraSR participated in the regulation of msrA1 in PMN-ingested bacteria, we measured msrA1 expression in wild-type, ΔvraSR and ΔvraSR mutants complemented with a multicopy plasmid (ΔvraSR with pEPSA5-vraSR) after phagocytosis by PMN. Phagocytosis of S. aureus by PMN was the same for all the strains (data not shown). Both wild-type and complemented mutants significantly upregulated msrA1 in response to ingestion by approximately 11- and 15-fold, respectively. In contrast, ΔvraSR exhibited a relatively muted response, with only an approximately 7-fold induction in msrA1 (p < 0.05; fig. 5c). Similar to the trend observed in msrA1, vraS expression in S. aureus ingested by DPI-treated PMN and CGD PMN was higher than that in normal PMN (online suppl. fig. 3). Taken together, these data provide support for a link between VraSR, a TCS that can be activated by perturbations to the cell wall, and Msr, one of the oxidant repair systems. However, they also highlight the complexity of msrA1 regulation in a biological setting composed of multiple interacting antimicrobial toxins, as occurs in PMN phagosomes, and implicate factors other than VraSR.

PMN Granules Induce the Expression of msrA1

Optimal PMN antimicrobial action relies not only on oxidants from the NADPH oxidase but also on granule proteins released into phagosomes during degranulation [28]. Granule proteases (e.g., elastase, cathepsin G) [29–31] and cationic antimicrobial proteins (e.g., defensins and cathelicidins) [32] can compromise the stability of bacterial membranes that in turn may disrupt the cell wall [33–35]. Because our data demonstrate that up-regulation of msrA1 in ingested S. aureus could be mediated by factors other than PMN-derived oxidants (fig. 3c) and could be induced by cell wall stress, we hypothesized that granule proteins could trigger a response that was relayed through VraSR. To test this hypothesis, we measured msrA1 in bacteria exposed to PMN granule-rich extracts in the absence of exogenous reactive oxygen species. The level of msrA1 expression was lowest at the start of the experiment prior to any treatment in all the strains. After a 30-min incubation period, msrA1 expression was slightly higher in bacteria that were not treated or in the RB control. This increase in msrA1 expression may reflect changes in the growth status of the bacteria, since msrA1 expression varies during different growth phases [3]. In bacteria treated with granule extract, msrA1 expression was significantly higher in the wild-type when compared to the RB-treated bacteria at 30 min (p < 0.05; fig. 6). In contrast, the level of msrA1 in granule extract-treated samples in ΔvraSR was not significantly elevated compared to its RB control. These data suggest that granule proteins alone promoted increased msrA1 expression and that VraSR contributed to the modulation of msrA1 in response to granule proteins.
Discussion

Optimal antimicrobial action in PMN relies heavily on phagocyte-generated oxidants. In such an inhospitable environment, ingested *S. aureus* rapidly initiates a program of transcriptional responses that promote its survival and dissemination [11, 36], making it likely that the net balance between sustained damage and repair dictates the fate of ingested bacteria. Defensive strategies employed by bacteria in response to oxidants involve both genes encoding proteins that target oxidants, such as catalase, superoxide dismutase, thioredoxin, and alkyl hydroperoxide reductase [36], as well as those that repair oxidant-mediated damage and restore normal function. Msr are key enzymes in the defense against damage mediated by reactive oxygen species that are produced as a byproduct of aerobic respiration, and their evolutionary conservation across nearly all species underscores their importance [37, 38]. HOCl oxidizes protein methionines in *Escherichia coli* in a dose-dependent fashion, and methionine oxidation closely correlates with loss of bacterial viability [39]. Conversely, the capacity of Msr to repair damaged methionines parallels the increased resistance of *E. coli* to killing by HOCl [39] and likewise contributes to the defenses of *Mycobacterium tuberculosis* [40] and *Helicobacter pylori* against HOCl [41]. Thus, we reasoned that oxidation of key proteins in *S. aureus* may also result in reduced viability when the Msr-mediated repair system is inadequate to meet demands.

We demonstrate that the absence of Msr activity increased the susceptibility of *S. aureus* to the oxidants H$_2$O$_2$ and HOCl. We found that the ability of the Msr system to temper the effects of oxidant damage was less marked when *S. aureus* was treated with low doses of H$_2$O$_2$ or HOCl, which may indicate that the role of Msr in oxidant defense becomes more important when *S. aureus* is subjected to higher levels of oxidant stress and greater levels of protein damage (fig. 2b). In addition, we observed that even in the absence of any oxidant treatment, the percentage of recovered ΔmsrA1B was sometimes slightly lower than that of the wild-type and complemented strain (fig. 2a–c). Although this difference did not reach statistical significance, it suggested that ΔmsrA1B may be slightly more sensitive to the aerobic environment during the 1-hour incubation in PBS than the other strains. This behavior contrasts with our observation that all the strains showed similar growth in TSB. Since TSB is a rich source of substrates that could serve as oxidant sinks, it is likely that the enriched media both promotes microbial growth directly and neutralizes some of the environmental oxidants, thus limiting their deleterious effects on the bacteria.

The absence of Msr activity increased the susceptibility of *S. aureus* not only to reagent H$_2$O$_2$ and HOCl but also to the antimicrobial effects of PMN. In contrast to the immediate exposure to high concentrations of oxidants imposed by adding H$_2$O$_2$ or HOCl to suspensions of *S. aureus*, oxidant generation within phagosomes occurs gradually, following the kinetics of NADPH oxidase assembly and activation. As a result, oxidants within PMN may be generated sufficiently slowly to allow reparative responses such as the induction of *msr* to be engaged. Given the role of Msr in oxidant repair, we speculated that PMN-derived oxidants may drive the upregulation of msrA1 that we observed in *S. aureus* ingested by PMN. Our data show that bacteria ingested by normal PMN upregulated msrA1 rapidly after phagocytosis. *S. aureus* ingested by PMN that have impaired NADPH oxidase activity and were not exposed to phagosomal oxidants also upregulated msrA1 after phagocytosis and to higher levels. These data suggest that the msrA1 response to ingested *S. aureus* may be muted by the presence of oxidants in the phagosome, either directly by oxidant attack on bacteria or indirectly by oxidative modifications of the host-derived phagosomal contents. In the absence of PMN, *S. aureus* exposed simultaneously to H$_2$O$_2$ and a cell wall-active antibiotic (vancomycin) had a blunted msrA1 transcriptional response relative to that seen in vancomycin alone. Unexpectedly, HOCl, a much more powerful oxidant than H$_2$O$_2$, did not influence vancomycin-induced msrA1. The mechanistic basis for the differential responses to the two oxidants is unknown and merits further study. These findings illustrate how oxidants and granule proteins present in phagosomes can act synergistically on target bacteria.

The *S. aureus* genome encodes three other msr genes besides msrA1, including msrB, msrA2 and msrA3. Since msrB is cotranscribed and regulated by the same promoter, the pattern of expression follows that of msrA1 and it is responsive to the same stimuli. The other two msr genes are located at different genomic loci and under the regulation of promoters that are responsive to differing stresses than that of msrA1 and msrB. Not only do msrA2 and msrA3 show a different pattern of expression to msrA1 and msrB during varied phases of growth, they also do not respond to the same stress signals [3]. For these reasons and also because MsrA1 and MsrB account for almost all the Msr activity in *S. aureus* (fig. 1), the expression of msrA2 and msrA3 was not evaluated in this study.
The regulation of msrA1 in S. aureus is not yet fully elucidated, although msr is one of a set of genes known as the cell wall stress stimulus, which is regulated by stresses inflicted by cell wall-active antibiotics such as β-lactams, vancomycin and D-cycloserine [42]. Genes in the cell wall stress stimulus overlap with those regulated by VraSR, a TCS that influences susceptibility of S. aureus to vancomycin by modulating cell wall biosynthesis [26]. The VraSR system senses disruptions of cell wall biosynthesis in target bacteria, which may explain why both cell wall-active antibiotics and antimicrobial peptides induce the VraSR system [43]. In our study, PMN granule proteins alone stimulated msr expression in a VraSR-dependent fashion. The mechanism by which VraSR is activated and how it subsequently modulates msrA1 remain to be elucidated, including whether VraR directly or indirectly regulates msr. We noted that the introduction of the complementation plasmid into ΔvraSR increased msrA1 expression to higher levels than that observed in ΔvraSR both in the presence and absence of granule extracts but did not restore it to wild-type levels. The levels of msrA1 were also similar in the RB and granule extract-treated samples for this strain. Complementation of a mutation can be challenging and, given that the restoration of vraSR expression was driven from a multicopy plasmid and from an inducible promoter rather than from its native promoter, the gene dosage and regulation of vraSR may not accurately emulate the wild-type strain under these conditions. Nonetheless, the levels of vraSR in ΔvraSR with pEPSA5-vraSR were higher than in ΔvraSR and allowed for greater msrA1 expression.

The transcriptional changes that occur in phagocytosed bacteria reflect a coordinated response to the multitude of stresses experienced within the host environment. Given the complexity of this environment, multiple signaling pathways underpin the net global response, and their cross-talk can contribute to the modulation of stress response genes such as msr. Indeed, our data show that there are factors other than VraSR that can modulate the expression of msrA1 in S. aureus within the PMN environment. The identification and characterization of signaling systems in addition to VraSR in the regulation of msrA1 modulation remain an area of interest.

Our study highlights Msr as one of the mechanisms by which S. aureus may resist the consequences of the multifaceted antimicrobial attack that occurs in PMN phagosomes and reemphasizes that the relationships between stress and repair pathways are not necessarily straightforward. We speculate that Msr and functionally related proteins in the antioxidant pathway serve important roles in cell wall biosynthesis and homeostasis. Further understanding of the relationship between oxidant stress, both exogenous and endogenous, and cell wall damage in the context of elucidating how S. aureus survives within PMN may provide insights into the pathogenesis of staphylococcal disease and into the development of novel therapeutic approaches.

Acknowledgements

The authors express special thanks to the members of the Nau-seef and Horswill laboratories for their help in this project. This work was supported by National Institutes of Health grants R01 AI078921 and R01 AI07958 to A.R.H. and W.M.N., respectively, and by a Merit Review Grant (to W.M.N.) from the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, with facilities and resources of the Veterans Administration in Iowa City, Iowa, USA.

Disclosure Statement

None of the authors have conflicts of interests.

References

4. Singh VK, Moskovitz J, Wilkinson BJ, Jayaswal RK: Molecular characterization of a chromosomal locus in Staphylococcus aureus that contributes to oxidative defence and is highly induced by the cell wall-active antibiotic oxacillin. Microbiology 2011;147:3037–3045.

Methionine Sulfoxide Reductases in S. aureus

DOI: 10.1159/000355915

