Biomarkers for Predicting the Efficacy of Anti-Epidermal Growth Factor Receptor Antibody in the Treatment of Colorectal Cancer

Yasuyuki Okada Hiroshi Miyamoto Takahiro Goji Tetsuji Takayama

Department of Gastroenterology and Oncology, Institutes of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan

Introduction

It is well recognized that epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is overexpressed in colorectal cancers (CRCs) and plays a pivotal role in CRC development. Anti-EGFR antibodies including cetuximab (Erbitux®) and panitumumab (Vectibix®) have recently been developed and are currently used as standard first-, second- or third-line chemotherapy for the treatment of metastatic CRCs. However, it has been reported that these agents are effective only for CRC with wild-type KRAS and not for KRAS mutation, indicating that KRAS mutation can serve as a useful biomarker for predicting the efficacy of anti-EGFR agents. Aside from KRAS mutation, BRAF, NRAS and PIK3CA mutations have also been identified as candidate biomarkers for predicting anti-EGFR antibody efficacy. In this review, the mechanism of action of anti-EGFR agents and their role as candidate biomarkers for predicting the efficacy of anti-EGFR agents are summarized.

Mechanism of Anti-EGFR Antibodies

The EGFR is a 170-kDa transmembrane glycoprotein containing a tyrosine-specific kinase. Ligands known to bind with the EGFR include epidermal growth factor...
EGF, TGF-α, amphiregulin, epiregulin or heparin-binding EGF-like growth factor. Ligand binding to the EGFR induces dimerization of the receptor, which results in the autophosphorylation of tyrosine residue in the intracellular domain, and subsequently downstream signal transduction via the \textit{RAS/RAF/MEK} (MAP kinase) pathway and \textit{PI3K/AKT} pathway (fig. 1). EGFRs are expressed in 60–80% of CRCs [1]. Cancer cells secrete TGF-α, which binds to EGFRs on the surface of cancer cells and promotes their growth by activating signal transduction in an autocrine manner. The activation of EGFR signal transduction not only promotes cancer growth but also invasion, metastasis and neovascularization (angiogenesis) of cancer tissue.

Cetuximab and panitumumab are used clinically as EGFR antibodies. Their primary mechanism of antitumor action involves competitive binding to the extracellular domain of EGFRs, which leads to inhibition of EGFR activation and subsequent signaling via the \textit{RAS/RAF/MEK/ERK} and \textit{PI3K/AKT} pathways. Moreover, anti-EGFR antibodies induce EGFR downregulation through dimerization and internalization of the receptor. It has also been reported that cetuximab activates proapoptotic molecules in vitro [2]. Thus, anti-EGFR antibody drugs inhibit growth, invasion, metastasis and angiogenesis, and induce apoptosis in CRC. A secondary mechanism of action of cetuximab involves its ability to induce antibody-dependent cellular cytotoxicity (ADCC), since it is an IgG1 subclass antibody, unlike panitumumab, which is an IgG2 subclass antibody. Experimental evidence has demonstrated that cetuximab acts by an indirect mechanism on the immune system through a cytotoxic effect mediated by ADCC and effector cells such as monocytes and natural killer cells [3].

Predictive Biomarkers

It is well accepted that \textit{KRAS} mutation is a predictive marker for the efficacy of anti-EGFR agents in the treatment of CRC. Treatment guidelines for CRC published by the National Comprehensive Cancer Network (NCCN), European Society for Medical Oncology (ESMO) and Japanese Society for Cancer of the Colon and Rectum (JSCCR) recommend the use of anti-EGFR antibodies only for CRCs with wild-type \textit{KRAS} mutation. Several other gene alterations aside from \textit{KRAS} have been identified as candidate biomarkers for predicting the efficacy of anti-EGFR treatment (table 1). Seven biomarkers are considered in turn in the following sections.

Fig. 1. EGFR signal transduction of the downstream pathway.

\textit{KRAS} is a small (21 kDa) GTP-binding protein. \textit{KRAS} mutation is found in roughly 35–45% of CRCs; two hotspots – codons 12 and 13 – account for about 95% of all mutations (~80% for codon 12 and 15% for codon 13). Mutations in other regions, such as codons 61, 146 and 154, occur less frequently.

The predictive value of \textit{KRAS} was first reported by Leivre et al. [4] who showed that \textit{KRAS} mutant cancers were unresponsive to cetuximab and had a poorer overall survival (OS) compared with the \textit{KRAS} wild-type cancers. Similarly, panitumumab was demonstrated to be effective only for \textit{KRAS} wild-type cancers. Large randomized multicenter phase III clinical trials demonstrated the predictive value of \textit{KRAS} for anti-EGFR therapy. van Cutsem et al. [5] performed a phase III trial to compare irinotecan, infusional fluorouracil and leucovorin (FOLFIRI) plus cetuximab versus FOLFIRI alone as first-line chemotherapy for CRCs (CRYSTAL trial). The response rate for cetuximab treatment was 59.3% (102/172) in the \textit{KRAS} wild-type group, which was significantly higher than that in the \textit{KRAS} mutant group (36.2%, 38/105, \(p = 0.03 \)). The median progression-free survival (PFS) in the \textit{KRAS} wild-type group tended to be better than in the \textit{KRAS} mutant group (9.9 vs. 7.6 months, \(p = 0.07 \)). Boke-}

-\textit{meyer et al. [6] preformed a phase III trial to compare folinic acid-fluorouracil-oxaliplatin (FOLFOX) plus cetuximab versus FOLFIRI alone as first-line chemothera-
py for CRCs (OPUS trial). The trial found significant differences in response rate ($p = 0.011$) and PFS ($p = 0.0163$) between KRAS wild-type and mutant groups. Similarly, in a phase III trial to compare FOLFOX plus panitumumab versus FOLFOX alone as a first-line chemotherapy (PRIME trial) $[7]$, significant differences in the response rate ($p = 0.02$) and PFS ($p = 0.02$) were noted between KRAS wild-type and mutant groups. A meta-analysis of 11 studies recently published showed that KRAS status was closely associated with the response rate ($p < 0.001$) and PFS ($p = 0.005$) $[8]$.

Recently, De Roock et al. $[9]$ reported that KRAS codon 13 mutants (G13D) treated with cetuximab showed significantly longer PFS and OS as compared with KRAS codon 12 mutants. However, this finding remains controversial and warrants further study.

BRAF

BRAF, a member of the serine/threonine kinase family, is directly downstream of KRAS in the MAP kinase cascade. Approximately 5–15% of CRCs are positive for BRAF mutation. More than 90% of the mutations are located at codon 600, where amino acid valine is substituted by glutamic acid (V600E) $[10]$. De Roock et al. $[11]$ performed a retrospective analysis of 370 patients treated with cetuximab and found that BRAF mutation was present in 24 of 340 KRAS wild-type patients (6.5%). The response rate in patients with BRAF mutation was only 8.3%, which was significantly lower than the rate in patients without BRAF mutation (38%, $p < 0.01$). In addition, patients with BRAF mutation showed significantly worse PFS and OS than those with wild-type KRAS and BRAF. These results indicate that

Table 1. Predictive markers for anti-EGFR antibody agents

<table>
<thead>
<tr>
<th>Marker</th>
<th>Therapy</th>
<th>Association with efficacy</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RR, %</td>
<td>p value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wild mutant</td>
<td>PFS, months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p value</td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS mutation</td>
<td>FOLFIRI + Cmab</td>
<td>59.3</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>FOLFOX + Cmab</td>
<td>61</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>FOLFOX + Pmab</td>
<td>55</td>
<td>9.6</td>
</tr>
<tr>
<td>Candidates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF mutation</td>
<td>Cmab + CT</td>
<td>38</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Cmab + CT</td>
<td>48</td>
<td>11.4</td>
</tr>
<tr>
<td>PIK3CA mutation</td>
<td>Exon 9/20</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Exon 9</td>
<td>29.6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Exon 20</td>
<td>36.3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>NRAS mutation</td>
<td>38.1</td>
<td>6.5</td>
</tr>
<tr>
<td>PTEN expression</td>
<td>Cmab + irinotecan or CAPOX</td>
<td>62.5 (10/16)</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Cmab + CT</td>
<td>46.1 (41/89)</td>
<td>7.8</td>
</tr>
<tr>
<td>EGFR GCN</td>
<td>Cmab + irinotecan</td>
<td>60</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Cmab ± CT</td>
<td>71</td>
<td>8.5</td>
</tr>
</tbody>
</table>

RR = Relative risk; Cmab = cetuximab; Pmab = panitumumab; CT = chemotherapy; GCN = gene copy number; N.D. = not determined.
BRAF mutation is capable of serving as a predictive and prognostic marker. However, Tol et al. [12] performed a retrospective analysis of BRAF mutation in a randomized controlled trial of patients receiving chemotherapy with (n = 227) or without cetuximab (n = 332) as first-line treatment. BRAF mutation was identified in 8.7% of all patients. The response rate for each group was not described in the study; however, in patients with BRAF mutation, there were no significant differences in PFS or OS between those treated with or without cetuximab (6.5 vs. 5.7 months for PFS and 12.9 vs. 12.8 months for OS). In contrast, the patients with BRAF mutation showed significantly worse PFS and OS than those with wild-type KRAS and BRAF irrespective of cetuximab treatment. The evidence to date indicates that BRAF mutation can serve as a prognostic biomarker, but its potential as a predictive biomarker for efficacy of anti-EGFR agents remains controversial.

PIK3CA (Exons 9 and 20)

The α-catalytic subunit of the phosphoinositol-3-kinase (PIK3CA) gene encodes the catalytic p110α subunit of PI3K. It has been reported that PIK3CA mutation occurs in 10–20% of CRCs and can occur with KRAS or BRAF mutations. More than 80% of PIK3CA mutations occur in exon 9 (60–65%) or exon 20 (20–25%). Sartore-Bianchiet et al. [13] performed a retrospective analysis of 110 patients treated with anti-EGFR agent-based regimens and found PIK3CA mutations in 13.6% (15/110). None of the 15 patients with the PIK3CA mutation achieved an objective response with anti-EGFR agents compared with a relative risk of 23% in the 95 patients with wild-type PIK3CA (p = 0.0337). However, Prenen et al. [14] analyzed 200 patients treated with cetuximab and showed that 5 of 39 responders (13%) and 18 of 160 non-responders (11%) had PIK3CA mutations (p = 0.781). Recently, De Roock et al. [11] performed a retrospective analysis of 743 patients treated with cetuximab and found PIK3CA mutations in 14.5% (108/743); 68.5% (74/108) in exon 9 and 20.4% (22/108) in exon 20. They showed that PIK3CA exon 9 mutation had no effect, whereas exon 20 mutations were associated with a worse outcome compared with wild-types: i.e. respectively, a response rate of 0.0% (0/9) versus 36.8% (121/329, p = 0.029), a median PFS of 11.5 weeks versus 24 weeks (p = 0.013) and a median OS of 34 weeks versus 51 weeks (p = 0.0057). Thus, only PIK3CA mutations in exon 20 may be an effective marker for predicting treatment efficacy. However, since the incidence of PIK3CA exon 20 mutation is very low (2–5%), further investigations are required.

NRAS (Codons 12, 13 and 61)

NRAS mutation accounts for only 3–5% of CRCs and mutation at codon 61 is the most commonly observed. NRAS mutation is exclusively detected to KRAS mutation, as is BRAF mutation. There has only been one study that investigated the relationship between NRAS mutation and the efficacy of anti-EGFR antibodies, conducted by De Roock et al. [11], in which NRAS mutation was observed in 4.3% (13/302 KRAS wild-type samples). NRAS mutants had a significantly lower response rate than wild-types [7.7% (1/13) vs. 38.1% (110/289), p = 0.013]. However, there were no significant differences between NRAS mutants and wild-types with respect to median PFS (14 vs. 26 weeks, p = 0.055) and median OS (38 vs. 50 weeks, p = 0.051). To date, there have been no studies of NRAS in a sizeable patient cohort.

PTEN and AKT

Several studies have investigated the relationship between PTEN and/or AKT protein expressions and the efficacy of treatment with anti-EGFR antibodies. Several studies have shown that PTEN loss is associated with resistance to cetuximab in patients with metastatic CRC [15, 16], although the studies were not uniform in evaluating the PTEN protein expression. Conversely, a study by Laurent-Puig et al. [17] reported that the loss of PTEN protein expression, which was detected in about 20% (22/111) of KRAS wild-type tumors, was not associated with tumor response or PFS, but it was associated with slightly worse OS (p = 0.013). Based on these studies, which differed with respect to the assay methodologies used, PTEN expression does not appear to have a clinically robust ability to predict the therapeutic response to cetuximab. Moreover, further standardization of PTEN expression assessment is a necessary challenge to confirm these data.

None of the four studies reported a statistically significant association between AKT expression and tumor response or survival [18, 19]. However, because these studies involved small sample numbers, further investigation is needed to determine the association between AKT expression and tumor response to anti-EGFR antibodies.

EGFR Expression

For initial clinical trials of anti-EGFR antibodies, only patients with metastatic CRC proven to be EGFR positive by immunohistochemistry were enrolled. However, the level of EGFR protein expression is not associated with sensitivity to anti-EGFR monoclonal antibodies [20, 21]. In fact, a therapeutic response to cetuximab has been observed in patients with EGFR-negative tumors, which in-
dicates that determination of EGFR positivity by immuno-

histochemical evaluation is not a reliable marker for predicting the efficacy of anti-EGFR monoclonal antibody therapy [22]. Licitra et al. [23] analyzed data from the EXTREME and CRYSTAL trials and determined that even in patients with KRAS wild-type tumors, immuno-
histochemical determination of EGFR expression was not predictive of the efficacy of cetuximab in combination with chemotherapy.

The EGFR gene copy number evaluated by quantitative PCR does not appear to correlate with the clinical outcome of patients, whereas the results of analysis by fluorescence in situ hybridization, FISH, appears to be associated with higher than usual treatment response [17, 24, 25]. Although promising results have been seen with EGFR amplification, technical challenges, including the reproducibility of methods to assess gene copy number and interlaboratory scoring system variability, have limited its role as a predictive biomarker [26]. Therefore, further studies are required to assess increased EGFR gene copy number as a predictive biomarker of anti-EGFR therapy.

Amphiregulin, Epiregulin

The overexpression of the EGFR ligands amphiregulin (AREG) and epiregulin (EREG) may promote tumor growth and survival by an autocrine loop mechanism. Khambata-Ford et al. [27] reported that metastatic CRC patients with high expression of AREG and EREG who were treated with cetuximab showed a statistically longer PFS period. Jacobs et al. [28] observed that patients with KRAS wild-type tumors that expressed high ligand levels had better outcomes with EGFR inhibitors, whereas KRAS wild-type tumors with low ligand expression behaved like KRAS mutant tumors.

Based upon these studies, AREG and EREG are candidate biomarkers for predicting the efficacy of anti-EGFR antibody treatment for patients with KRAS wild-type tumors. However, methods for measuring protein levels and gene expression for AREG and EREG are not standardized and further studies are needed.

Epilogue

Recent advances in molecular biology have made it possible to develop molecular targeting agents such as anti-EGFR antibodies. The KRAS gene was identified as a predictive biomarker and is currently being utilized in clinical trials. BRAF mutation is capable of serving as a predictive and prognostic marker. Regarding other candidate biomarkers, the predictive values are still controversial and further studies are required. In the near future, it is expected that new predictive biomarkers will be validated in clinical trials, and that more personalized treatment for CRC will be possible as a result.

Disclosure Statement

The authors have no conflicts of interest to declare.

