Anticonvulsant Hypersensitivity Syndrome: Report of 2 Cases from Kuwait

Hanan A. Bin-Nakhi, Sameera Sadeq, Raimond G. Pinto, Yousef Habeeb

Department of Pediatrics, Al Adan Hospital, and Neurology Unit, Department of Pediatrics, Mubarak Hospital, Kuwait

Key Words
Antiepileptics · Phenytoin · Carbamazepine · Lamotrigine · Anticonvulsant hypersensitivity syndrome

Abstract
Objective: To illustrate the clinical features, laboratory findings, and management of anticonvulsant hypersensitivity syndrome (AHS), emphasizing the importance of recognizing its multiple clinical components and raising awareness of the cross-sensitivity among different anticonvulsants. Clinical Presentation and Intervention: Two cases of AHS due to carbamazepine and a combination of sodium valproate and lamotrigine are reported. Both patients presented within the first month of starting the new antiepileptic medication with fever, skin rashes, hematological abnormalities, and hepatitis. The offending antiepileptic drugs were immediately stopped in both cases. Skin rashes responded to intravenous immunoglobulin in case 1 and to intravenous hydrocortisone in case 2. Conclusion: AHS is a serious, life-threatening condition. This report demonstrates that the most important steps in the management of AHS are to recognize the disorder, discontinue the offending antiepileptic drug, and provide supportive care in an inpatient setting and treat with benzodiazepines if seizures occur.

Introduction
Phenytoin has long been recognized as a cause of hypersensitivity reaction, originally reported as fever, rash and lymphadenopathy [1]. The systemic manifestations (including primarily hepatitis and nephritis) were first described in 1950 as the Dilantin sensitivity syndrome [2]. Later it was observed that the syndrome was also caused by other aromatic antiepileptic drugs (carbamazepine, phenobarbital and primidone) and was therefore referred to as anticonvulsant hypersensitivity syndrome (AHS) in 1988 [3]. Recently, other antiepileptics such as lamotrigine have been reported to cause AHS, especially when used in combination with sodium valproate [4]. AHS remains a poorly understood problem consisting of countless diagnostic features with which most physicians are unfamiliar. In this report, we describe 2 cases of AHS due to carbamazepine and a combination of sodium valproate and lamotrigine.

Case Reports

Case 1
A 7-year-old Kuwaiti girl was well until the age of 5 years when she had three attacks of simple partial seizures in the form of mouth twitches. Two years later she developed generalized tonic clonic convulsions. The patient was given carbamazepine and after 1 month of treatment, she was admitted to the hospital with fever and general...
ized pruritic skin rash. She was toxic and febrile (40°C). She had severely congested throat with significantly enlarged strawberry tongue and tender cervical lymphadenopathy. The rash was maculopapular and erythematous involving the trunk and extremities. After 3 days the rash became more confluent with severe itching and could peel easily. She developed icteric sciera with swollen face and bilateral periocular edema. There was tenderness over the right hypochondrium with a massively enlarged liver, 7 cm below the right costal margin. The carbamazepine was withdrawn immediately and the patient was placed on oral and local antihistamine. Investigations as given in table 1 revealed: leukocytosis with eosinophilia and normal erythrocyte sedimentation rate. Liver function tests showed elevated liver enzymes and a high bilirubin level. Urinalysis and renal function tests were normal. Throat and blood cultures were sterile. Monospot test was negative, nti-streptolysin O titer (ASOT) >200, and virology study for Epstein-Barr virus and cytomegalovirus infection was negative. Because the general condition of the patient did not improve she was given intravenous immunoglobulin in a dose of 2g/kg in 24 h. After 36 h, the patient became afebrile with improved general condition and liver function. She continued to have skin rash for another 7 weeks. Currently, she is doing well on sodium valproate only.

Case 2
Another 7-year-old Kuwaiti girl had an uneventful medical history until the age of 3 years when she had the first attack of febrile seizures. Two years later, she developed frequent absence seizures degenerating to complex partial seizures (staring, loss of consciousness and incontinence of urine) for about 1–2 min, 10 times per day. She was on incrementally adjusted doses of sodium valproate, initially 5 mg/kg/day and subsequently increased up to 40 mg/kg/day for a better control of the seizures. Two weeks before admission lamotrigene was added to her medication (in step-up doses of 1–5 mg/kg/day) because of sodium valproate-induced persistent thrombocytopenia. On admission she had tremors, fever, cervical lymphadenopathy, and pruritic pleomorphic skin rash. Blood investigations (table 1) revealed pancytopenia, eosinophilia, with atypical lymphocytes and mildly elevated liver enzymes. Virology screen ruled out Epstein-Barr virus infection. Both sodium valproate and lamotrigene were stopped within 2 days and were replaced with clonazepam. Her blood investigations reverted to almost normal levels. She continued to have skin rashes for another 3 weeks that responded to intravenous hydrocortisone. The patient continues to be on clonazepam and the seizures are under control.

Discussion

AHS is a rare syndrome that is characterized by the triad of fever, skin rash, and internal organ involvement [3]. More commonly, patients on antiepileptic medications develop an isolated skin eruption without fever or internal organ involvement [5]. The exanthem often subsides with reduction of dosage despite continued anticonvulsants in some patients. The incidence of severe skin reactions (Stevens-Johnson syndrome, or toxic epidermal necrolysis) as part of AHS was found to be as high as 9% among 53 patients with AHS induced by phenytoin, or carbamazepine, or phenobarbital [3]. As in our 2 cases, the diagnosis of AHS is difficult because this syndrome can have a variable spectrum of clinical and laboratory findings, and may mimic infectious, neoplastic, and collagen disorders. Currently, diagnostic criteria include the following: fever, rash, lymphadenopathy, hepatitis, hematologic abnormalities (hemolytic anemia, thrombocytopenia, agranulocytosis, eosinophilia, leukocytosis, and lymphocytosis), periocular/orofacial edema, myalgia/arthralgia, nephritis, pharyngitis, and pulmonary manifestations [6]. These manifestations usually appear within the first 2–8 weeks after initiation of anticonvulsant therapy and resolve on its discontinuation [7] as observed in these 2
cases that had similar clinical presentations and labora-
tory findings in spite of the use of different anticonvulsants.
Recently AHS has been described in children due to car-
bamazepine as in case 1 [8] and due to adding lamotrigine
to sodium valproate as in case 2 [4]. The pathogenesis of
this syndrome is still poorly understood. It is thought that
predisposed patients might be unable to detoxify arene-
oxide metabolites of antiepileptic drugs adequately, initi-
ating an autoimmune attack on the target organs where
the cytochrome P-450 system is produced. It has also been
proposed that the antiepileptic drug mimics viral infec-
tion by activating CD4+ and CD8+ T cells, with the con-
comitant production of interleukin-5, the main matura-
tion factor for eosinophils [9].

AHS is a serious, life-threatening condition; rare fatalities
have been reported [10]. It should be promptly recog-
nized and managed. In this study the offending antiepi-
leptic drugs were immediately stopped in both cases and
replaced with intravenous immunoglobulin in case 1 and
intravenous hydrocortisone in case 2. It has been reported
that intravenous immunoglobulin can shorten and ame-
liorate the clinical course of the anticonvulsant hypersen-
sitivity disease [11] as exemplified in case 1. As such it is
recommended that all patients suspected to have this syn-
drome should be immediately admitted to hospital; the
offending antiepileptic drug should be discontinued with
minimal risk of status epilepticus [12]. Benzodiazepines
may be used for short-term control and continuous intra-
venous infusion of diazepam is a reasonable therapeutic
choice for the management of status epilepticus in a
patient with AHS [13]. Aromatic antiepileptics (carbama-
zepeine, phenobarbital, phenytoin, and primidone) and
some other anticonvulsants (lamotrigine, and gabapen-
tin) should be avoided because crossreactivity among
these drugs is as high as 70–80% [14]. Supportive and
symptomatic treatment, focusing on nutritional care, pre-
vention of infection, skin care, and management of ocu-
lar disease, is essential [12]. Intravenous corticosteroid
(0.5 mg/kg/day) has been considered the standard of care
in cases with extensive skin rash, or in cases with involve-
ment of internal organs (as in our 2 cases).

First-order relatives of patients who have experienced
AHS have been reported to have an increased risk [15]. It
has been suggested that the AHS may be inherited as an
autosomal codominant pattern [3]. Therefore, both the
patient and his family should be counseled. Lymphocyte
toxicity assay and patch testing [16] can be used to con-
firm the diagnosis of AHS. If positive, in vitro testing of
alternative antiepileptic drugs can be helpful in guiding
the patient's future therapy. Patient's relatives can be
screened by lymphocyte toxicity assay and should be
informed about the increased risk for AHS.

Conclusion

AHS is a serious, life-threatening condition. This report
demonstrates that the most important steps in the
management of AHS are to recognize the disorder, dis-
continue the offending antiepileptic drug, and provide
supportive care in an inpatient setting and treat with ben-
zodiazepines if seizures occur. Intravenous immunoglob-
ulin and systemic corticosteroids should be considered
especially in cases with severe skin rashes.

References

1 Silber IB, Epstein JW: The treatment of chorea with
phenylethylhydantoin: A study of 28 cases. Arch Pediatr
1934;31:373–382.
2 Chaiken BH, Goldberg BI, Segal JP: Dilantin
sensitivity: Report of a case of hepatitis with
jaundice, pyrexia, and exfoliative dermatitis. N
3 Shear NH, Spielberg SP: Anticonvulsant hypersen-
sitivity syndrome: In vitro assessment of
4 Faught E, Morris G, Jacobson M, French J,
Harden C, Montouris G, Rosenfeld W: Adding
lamotrigine to valproate: Incidence of rash and
other adverse effects. Epilepsia 1999;40:1135–
1140.
5 Wilson T, Hojer B, Tomson G, et al: High inci-
dence of a concentration-dependent skin reac-
tion in children treated with phenytoin. BMJ
6 Vittorio CC, Muglia JI: Anticonvulsant hyper-
155:2285–2290.
7 Conger LA Jr, Grabski WJ: Dilantin hypersensi-
8 Straussberg R, Harel L, Ben-Amiati D, Cohen
D, Amir J: Carbamazepine-induced Stevens-
Johnson syndrome treated with IV steroids and
9 Singer ML, Shapiro LE, Shear NH: Cytochrome
P-450 3A: Interactions with dermatologic ther-
10 Schlienger RG, Shear NH: Antiepileptic drug
155:2285–2290.
11 Scheuerman O, Nofech-Moses Y, Rachmel A,
Parker WA, Shearer CA: Phenytoin hepatotox-
icity: A case report and review. Neurology
12 Griebel ML: Acute management of hypersensi-
tivity reactions and seizures. Epilepsia 1998;
13 Bertz RJ, Howrie DL: Diazepam by contin-
uous intravenous infusion for status epilepticus
14 Moss DM, Rudis M, Henderson SO: Cross-sen-
sitivity and the anticonvulsant hypersensitivity
15 Parker WA, Shearer CA: Phenytoin hepatotox-
icity: A novel lymphocyte toxicity assay to assess drug
hypersensitivity syndromes. Clin Biochem

Anticonvulsant Hypersensitivity Syndrome