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 Many Drugs of Abuse and Therapeutics Target 

Biogenic Amines 

 Biogenic amines are a group of neurotransmitters 
 derived by the enzymatic decarboxylation of naturally 
occurring amino acids. These transmitters include the 
catecholamines, dopamine and norepinephrine, as well 
serotonin and acetylcholine. Each of these neurotrans-
mitters has characteristic properties of synthesis, packag-
ing, release, targets, degradation and action that allow its 
characterization at the synapse.

  Biogenic amines are implicated in a wide range of be-
haviors, cognitive functions and homeostatic functions 
in the mature central nervous system (CNS). However, 
these neuromodulators appear early during embryogen-
esis, well before the onset of synaptogenesis, suggesting 
that they also play important roles in brain development. 
It is therefore not surprising that alterations to these sys-
tems, either by pharmacological agents that affect syn-
thesis or binding in the mature system, or developmen-
tally due to toxic insults or genetic modifications, will 
have important consequences on the brain. In this re-
view, we will particularly emphasize the role of the devel-
oping dopamine system, but also describe data implicat-
ing noradrenergic and serotonergic projections. For dis-
cussion of other neurotransmitter systems and drug 
targets during development, we refer the reader elsewhere 
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 Abstract 

 Defects in the development of the brain have a profound 
impact on mature brain functions and underlying psychopa-
thology. Classical neurotransmitters and neuromodulators, 
such as dopamine, serotonin, norepinephrine, acetylcho-
line, glutamate and GABA, have pleiotropic effects during 
brain development. In other words, these molecules pro-
duce multiple diverse effects to serve as regulators of dis-
tinct cellular functions at different times in neurodevelop-
ment. These systems are impacted upon by abuse of a variety 
of illicit drugs, neurotherapeutics and environmental con-
taminants. In this review, we describe the impact of drugs 
and chemicals on brain formation and function in animal 
models and in human populations, highlighting sensitive 
periods and effects that may not emerge until later in life. 
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[Slotkin, 1998; Francis et al., 1999; Olney et al., 2002; 
Abreu-Villaca et al., 2003; Herlenius and Lagercrantz, 
2004; Rodier, 2004; Holmes et al., 2005].

  Dopamine 
 Dopamine (DA) is widely distributed in the adult CNS 

and serves a variety of functions in the mature brain, in-
cluding control of movement. DA is also involved in reg-
ulation of the endocrine, limbic and cardiovascular sys-
tems. DA abnormalities appear to contribute to many 
neurological and psychiatric disorders, including schizo-
phrenia, Parkinson’s disease, attention-deficit hyperac-
tivity disorder and drug addiction [Kiyatkin, 1995; Gold-
man-Rakic, 1998; Nestler, 2001; Girault and Greengard, 
2004; Arnsten and Li, 2005; Biederman and Faraone, 
2005; Kalivas and Volkow, 2005]. Many drugs used for 
therapeutic purposes, such as antipsychotics, act directly 
on the DA system.

  All the catecholamines, characterized by a benzene 
ring with 2 hydroxyl groups and attached amine group, 
are derived from the amino acid tyrosine. DA is synthe-
sized from conversion of  L -tyrosine into  L -dopa by the 
rate-limiting enzyme tyrosine hydroxylase. Subsequent 
activity of DOPA decarboxylase results in conversion to 
dopamine. DA receptors are characterized by an extra-
cellular N-terminus region, intracellular C-terminus re-
gion and 7 membrane-spanning regions. The receptors 
are coupled intracellularly to guanine nucleotide-bind-
ing proteins that induce intracellular signaling cascades 
to influence regulation of calcium and potassium chan-
nels on the postsynaptic membrane. There are 2 subfam-
ilies of DA receptors based on their pharmacological pro-
files and sequence homology: D 1 -like receptors and D 2 -
like receptors. D 1 -like receptors, including the D 1  and D 5  
receptor subtypes, catalyze the synthesis of cyclic adenos-
ine monophosphate (cAMP) from the action of adenylate 
cyclase on adenosine triphosphate. D 2 -like receptors, in-
cluding the D 2 , D 3  and D 4  receptor subtypes, inhibit 
cAMP synthesis [Kebabian and Calne, 1979; Missale et 
al., 1998]. Transmitter action is terminated by re-uptake 
into the presynaptic terminal by a high-affinity plasma 
membrane dopamine transporter and ezymatically de-
graded by monoamine oxidase or catechol- � -methyl 
transferase.

  There are several major dopaminergic pathways. The 
nigrostriatal tract consists of dopaminergic neurons in 
the substantia nigra pars compacta that terminate in the 
striatum, a major DA-containing area of the brain. The 
striatum is a component of the extrapyramidal motor 
system, and plays an essential role in the coordination of 

locomotor activity. Degeneration of the neurons in the 
nigrostriatal pathway is the primary pathological find-
ing in Parkinson’s disease, resulting in characteristic 
motor dysfunction. DA is also believed to be involved 
with the limbic system, particularly in behaviors associ-
ated with motivation, reward (endogenous systems and 
drug abuse) and reinforcement. The mesolimbic and 
mesocortical pathways are 2 midbrain dopaminergic 
pathways implicated in these behaviors. Both pathways 
begin in the midbrain ventral tegmental area (VTA) and 
provide input to the nucleus accumbens and frontal cor-
tex (both medial prefrontal and anterior cingulate), re-
spectively [Olson et al., 1972]. In monkeys, it has also 
been observed that a subset of VTA neurons provide in-
nervation to the caudate nucleus of the striatum; thus, 
implicating the striatum in the regulation of emotional 
behaviors in this species [Lynd-Balta and Haber, 1994a, 
b; Haber et al., 1995].

  Tyrosine hydroxylase, the rate-limiting enzyme in DA 
synthesis and a useful marker for identifying DA neu-
rons, is first apparent at embryonic days (ED) 12–13 of an 
approximate 21-day gestational period in the rat mid-
brain, and is present by ED 14 of an approximate 30-day 
gestational period in the rabbit. DA is also likely to have 
early biological activity in the primate brain. In the mon-
key, DA neurons of the substantia nigra /VTA are pro-
duced between ED 36 and ED 43 of a 165-day gestational 
period [Levitt and Rakic, 1982]. In humans, midbrain DA 
neurons appear during the first trimester in the second 
month of gestation [Olson and Seiger, 1972]. This input is 
thus already present in the cortex even while more super-
ficial cortical layers (II–IV) are beginning to form, con-
sistent with a morphogenic role of DA.

   Axons of dopaminergic cells reach the cortex a few 
days after their initial detection in the midbrain, inner-
vating the cortex in a bilaminar pattern with greatest in-
put into layers II and/or III and V and/or VI depending 
upon the cortical region in the monkey. This stands in 
contrast with the innervation pattern in rodents, in which 
there is substantial innervation of layer I as well as over-
lap between thalamic and catecholamine neurons in lay-
er IV [Levitt et al., 1984]. Limbic cortical regions, such as 
the anterior cingulate and medial prefrontal cingulate re-
ceive the densest dopaminergic innervation. The density 
of tyrosine hydroxylase-positive axons in the cortex in-
creases gradually over development, then declines post-
natally to reach adult levels during puberty. This pro-
tracted postnatal increase in dopamine content occurs 
over a time period during which a number of develop-
mental milestones occur that may involve transmitter 
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signaling, including obtaining competency on working 
memory tasks [Lambe et al., 2000].

  Fluorescent histochemical analysis of DA afferents in 
the cortex shows regional differences in DA input that 
correspond well with the heterogeneous distribution of 
endogenous DA content assayed biochemically in the 
cortex [Brown et al., 1979; Reader et al., 1989a]. In the 
monkey, in addition to dense prefrontal DA innervation, 
there is also substantial DA input to the premotor and 
primary motor cortex, as well as the anterior regions of 
the superior and inferior gyri of the temporal lobe. Min-
imal contributions of DA afferents, however, are found in 
the parietal and occipital lobes across species [Levitt et 
al., 1984; Reader et al., 1989a]. The mechanisms respon-
sible for the proper guidance of dopaminergic afferents 
from the midbrain to the cortex and the morphogenic 
properties of these afferents on cortical neurons are not 
well-understood, but netrins and ephrins have been im-
plicated [Yue et al., 1999; Flores et al., 2005; Lin and Isac-
son, 2006].

  Transcripts for the D 1 , D 2  and D 3  receptors can be de-
tected in the striatum and cortex by ED 14 in the rat and 
by ED 12 in the mouse [Jung and Bennett 1996; Araki et 
al., 2007]. D 1  and D 2  receptors are measurable at these 
early prenatal time points, and increase in abundance 
throughout prenatal and early postnatal development to 
reach adult levels of expression between postnatal days 
(PD) 14 and 21 in rodents [Sales et al., 1989; Rao et al., 
1991; Schambra et al., 1994; Caille et al., 1995]. In the 
monkey, DA receptors appear in target regions of DA in-
put by the first quarter of gestation [Lidow et al., 1991; 
Lidow 1995a], and, in humans, DA receptor binding sites 
have been detected by week 12 of gestation [Aubert et al., 
1997]. Therefore, in all species examined, DA receptors 
are present very early in prenatal development, consistent 
with a role for DA in regulating neuronal differentiation 
and circuit formation. DA receptors have characteristic 
laminar distribution in the cortex, as observed in the 
monkey, [ 3 H]SCH23390-labeled D 1  receptors have a bi-
laminar distribution with the highest concentration in 
the supragranular layers of the cortex (I,II and IIIa) and 
deep layers V and VI with relatively few receptors in in-
termediate strata. [ 3 H]raclopride-labeled D 2  receptors, on 
the other hand, are most concentrated in layer V and ex-
ist in lower densities than D 1  receptors throughout the 
cortex [Goldman-Rakic et al., 1990; Lidow et al., 1991]. 
Dense DA innervation into the superficial layers of cortex 
may be a primate specialization as binding in these layers 
has not been observed in rodents. The anatomical distri-
bution of cortical DA receptors is heterogeneous through-

out various brain regions, and corresponds with concen-
tration of DA fiber input and endogenous DA and me-
tabolites.

  The majority of work thus presented has been done in 
the rodent, although comparisons have been made be-
tween species with available data on nonhuman primates 
and humans when possible and less often with rabbits. 
The characterization of the DA system in rabbits vali-
dates it as a relevant animal model for study (details fur-
ther on). Pharmacological agents used to characterize D 1  
receptors in the rat, nonhuman primate and humans 
have similarly been used in rabbits to characterize high-
affinity receptors in the cortex and striatum with similar 
pharmacological profiles as described in the aforemen-
tioned species [Reader et al., 1989b]. Similarly, D 2  recep-
tors have been characterized in the rabbit striatum and 
cortex [Dewar et al., 1989]. In the rabbit CNS, high levels 
of DA content are present within the anterior cingulate, 
while other cortical areas such as the somatosensory cor-
tex and visual cortex have low levels of endogenous con-
tent. The highest concentrations of DA, as similarly ob-
served in other species studied, are in the neostriatum 
with no differences between lateral and medial caudate 
or putamen in the rabbit. Receptor densities are hetero-
geneous between brain regions with the highest concen-
trations of D 1  and D 2  receptors in the striatum. In the 
striatum, D 2  receptors exist in a lateral to medial gradient 
in the caudate, findings consistent with observations in 
the rat. In the cortex, D 1  receptor density is significantly 
lower than in the striatum, but corresponds with areas of 
DA innervation. D 2  receptor density is also heterogenous, 
and less than D 1  receptor density in the cortex [Dewar et 
al., 1989; Dewar and Reader, 1989; Reader et al., 1989b].

  In vitro studies have supported a role for DA as both a 
promoter and an inhibitor of neurite growth [Todd, 1992; 
Reinoso et al., 1996; Song et al., 2002; Stanwood and Lev-
itt, 2007]. The actions of DA on outgrowth are modified 
by the complement of receptors that are activated, and as 
a function of the neuronal cell type being modulated. For 
example, in cortical neurons, selective D 1  receptor activa-
tion decreases neurite outgrowth in a dose-dependent 
manner, whereas D 2  receptor activation increases out-
growth. In striatal neurons, however, these effects are re-
versed, with D 1  receptor activation serving to promote 
neuronal differentiation and process outgrowth. DA sig-
naling also appears to be involved in prenatal neurogen-
esis itself within the neuroepithelial precursors of the 
striatum and cerebral cortex, via influences on cell cy-
cle length [Ohtani et al., 2003; Zhang et al., 2005]. The 
phenotypic differentiation and migration of inhibitory 
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GABAergic interneurons may also be modulated by do-
paminergic stimulation [Crandall et al., 2007]. Studies 
from our laboratory and others investigating the effects 
of prenatal cocaine exposure suggest that modification of 
DA D 1  receptor signaling during a sensitive period of pre-
natal development induces permanent effects on circuit 
formation and function (see below). Recent data also sug-
gests that transient overexpression of the D 2  receptor in 
the developing striatum can cause life-long changes in 
the activity of D 1  receptor systems in the prefrontal cortex 
[Kellendonk et al., 2006]. Finally, DA-dependent process-
es also alter postnatal development of brain circuits, es-
pecially during the periods of synaptic maturation and 
refinement.

  Norepinephrine or Noradrenaline 
 Norepinephrine (NE) is synthesized and released by 

adrenergic axon terminals in both the CNS and the sym-
pathetic division of the autonomic nervous system. In the 
CNS, the cell bodies of NE neurons are concentrated in 
the brainstem, particularly in the locus coeruleus of the 
dorsal pons where they are involved in diffuse projec-
tions to the neocortex [Segal et al., 1973; Levitt and Moore, 
1978; Lindvall et al., 1978; Levitt et al., 1984]. NE is in-
volved in mediating attention, anxiety, arousal, feeding 
behaviors, and learning and memory.

  NE neurons are born at a relatively early time in the 
CNS of monkeys during the first quarter of gestation, ap-
proximately ED 30 for neurons in the medial locus coe-
ruleus and ED 32/ED 33 for those situated more laterally. 
In rats, fluorescently labeled neurons are observed in the 
nucleus early in gestation, at approximately ED 13 [Olson 
and Seiger, 1972; Lauder and Bloom, 1974b]. The major-
ity of NE axon terminals ascend to the forebrain in the 
dorsal tegmental bundle, dessucating almost immediate-
ly or more rostrally to join the ascending medial fore-
brain bundle. Fluorescence histochemistry suggests that 
developing axons enter the neocortex across multiple 
cortical layers; however, as the cortex matures, NE affer-
ent input is most concentrated in a bilaminar pattern, 
predominantly in layers II and/or III (superficial) and V 
and/or VI (deep). There is heterogenerity in density of NE 
input between cortical regions with the somatosensory 
cortex receiving the densest NE innervation. NE fibers 
are also found intermingled with DA neurons in areas of 
the prefrontal cortex, as well anterior parts of the supe-
rior and inferior temporal gyri. NE innervation is spars-
est in posterior parietal areas and occipital lobes includ-
ing visual cortex [Levitt et al., 1984; Reader et al., 1989a]. 
These synapses mature during early postnatal life and the 

adult pattern of innervation is obtained by the end of the 
first postnatal week in rodents [Lauder and Bloom, 1975; 
Levitt and Moore, 1979]. In primates, there is a consider-
ably longer maturation process postnatally as the first 
postnatal week in rodents is equivalent to the third tri-
mester in primates.

  NE synthesis requires DA as a precursor substrate. DA 
is trafficked by vesicular transport into adrenergic termi-
nals where it is converted to NE by the enzymatic activ-
ity of DA  � -hydroxylase [Segal et al., 1973]. Receptors 
sensitive to NE are divided into 2 classes,  � - and  � -adren-
ergic receptors, based upon the physiological response to 
catecholamines. The classes are further divided into sub-
types, of which there exists  �  1 ,  �  2 ,  �  1  and  �  2  based on 
pharmacological profiles. In rodents,  �  1 - and  �  2 -adreno-
receptor expression can be detected 1 day after birth by 
specific radioligand binding. Receptor binding increases 
with age, reaching a peak between PD 18 and 21 before 
declining to reach adult levels after the fourth postnatal 
week [Morris et al., 1980]. A similar trend in ontogeny is 
apparent with  � -adrenergic receptors, with these recep-
tors not being detected before PD 7 [Harden et al., 1977; 
Pittman et al., 1980].

  [ 3 H]clonidine labeled  �  2 -receptors in the monkey are 
predominately found in the superficial layers of the cor-
tex, with a descending concentration gradient from layers 
I to VI. Similarly, the density of [ 3 H]prazosin-labeled  �  1 -
receptors decreases from layers I to IV; however, there is 
a slight increase in receptor concentration in the deeper 
cortical layers.  �  1  and  �  2  receptors are most concentrated 
in the intermediate layers of the cortex [Goldman-Rakic 
et al., 1990]. Species differences exist between primates 
and rodents in stratification of receptor density. In the 
rat, the highest concentration of  �  1 -receptors are found 
in layers III and IV, and  �  receptors are homogenously 
distributed.

  Both types of receptors alter the postsynaptic mem-
brane potential by acting upon potassium and calcium 
channels. Like DA, NE is terminated by reuptake into the 
presynaptic terminal by a high-affinity transporter, 
where it is enzymatically degraded or inactivated by 
monoamine oxidase.

  Serotonin (5-Hydroxytryptamine) 
 Serotonin (5-HT) is a well-known modulator of a va-

riety of cognitive and behavioral functions, including 
sleep, sexual urge, anxiety, appetite, temperature regula-
tion, learning and memory, and mood. As such, 5-HT 
imbalances are implicated in a variety of disorders such 
as depression, anxiety disorders and aggression [Olivier 

D
ow

nloaded from
 http://w

w
w

.karger.com
/dne/article-pdf/31/1-2/7/2627922/000207490.pdf by guest on 24 April 2024



 Neurodevelopmental Effects of Drugs 
and Toxicants 

Dev Neurosci 2009;31:7–22 11

et al., 1995; Lucki 1998; Gingrich and Hen, 2001]. 5-HT 
also exerts influence during specific critical periods dur-
ing early development. Accumulated evidence indicates 
that 5-HT plays a role in many developmental processes, 
including neurogenesis; neuronal migration and differ-
entiation; synaptogenesis; and craniofacial, cardiac and 
limb development, prior to assuming is role as a neu-
rotransmitter in the mature brain [Whitaker-Azmitia, 
2001; Gaspar et al., 2003; Persico et al., 2006]. 5-HT also 
plays crucial roles in thalamocortical patterning [Le-
brand et al., 1996; Rebsam et al., 2002; Bonnin et al., 
2007].

  Serotonergic neurons are among the earliest neurons 
to be generated during development of the brain. In the 
monkey, serotonergic neurogenesis in the brainstem ra-
phe nuclei is evident by the end of the first month of ges-
tation in 2 distinct phases. Neurons in rostral raphe nu-
clei are generated between ED 28 and 35 with a peak gen-
esis around ED 30. Caudal raphe nuclei are generated 
somewhat later with peak neurogenesis between ED 38 
and 40 [Levitt and Rakic, 1982]. In rodents, 5-HT neu-
rons are evident in the midbrain by ED 12 [Lauder and 
Bloom, 1974a], and by the fifth week of gestation in hu-
mans [Olson and Seiger, 1972; Sundstrom et al., 1993; 
Lambe et al., 2000]. One day after their generation, sero-
tonergic neurons in the raphe can synthesize and release 
5-HT from their growing axonal processes [Lidov and 
Molliver, 1982; Lambe et al., 2000]. Serotonergic termi-
nals are found broadly throughout the forebrain, includ-
ing the thalamus and cortex. In the cortex, serotonergic 
input is greatest in visual and somatosensory cortical ar-
eas, and less in prefrontal and temporal cortical regions. 
5-HT levels increase prenatally through the early postna-
tal years before declining to reach adult levels [Whitaker-
Azmitia, 2001].

  Numerous 5-HT receptors exist and are grouped into 
7 different families based on molecular cloning. Addi-
tional receptor motifs are created through the acts of 
mRNA splicing and editing events. Each receptor sub-
type possesses distinct cellular and/or regional distribu-
tions, pharmacological profiles and signal transduction 
systems. Most 5-HT receptors are heterotrimeric G pro-
tein-coupled receptors that activate   calcium and   potassi-
um channels through intracellular signaling cascades. 5-
HT 4 , 5-HT 6  and 5-HT 7  receptors couple to the stimula-
tory G s �   protein to increase activity of adenylate cyclase. 
5-HT 3  receptors, however, are ligand-gated ion channels 
[Hartig 1994; Jackson and Yakel, 1995].

  5-HT receptors are also expressed early in prenatal de-
velopment [Hellendall et al., 1993; Bonnin et al., 2006]. 

For example, 5-HT 2  receptor immunoreactivity is initial-
ly apparent in the cortex between ED 19 and PD 0 in ro-
dents. After birth, there is a rapid increase in expression 
levels in layers II–VI followed by gradual decline to adult 
levels beginning around the second postnatal week [Mo-
rilak and Ciaranello, 1993]. In the adult, 5-HT 2  receptors 
are concentrated in the intermediate strata III and IV of 
the cortex. Receptor localization is consistent between 
rodents, monkey and humans [Goldman-Rakic et al., 
1990; Morilak and Ciaranello, 1993]. Similarly, the same 
developmental trend is observed for expression of 5-HT 1  
receptors. At birth, the percentage of receptors expressed 
varies among brain regions with densities ranging from 
5 to 50% of adult levels. There is then a transient increase 
in expression levels followed by a decrease to adult levels 
during the first postnatal month [Pranzatelli, 1993]. In 
the adult monkey, 5-HT 1  receptors are found in highest 
concentrations in the superficial layers of the cortex 
[Goldman-Rakic et al., 1990]. 5-HT 1  receptor localiza-
tion is consistent between monkey and human, while in 
the rat receptor density is greatest in layer V [Hoyer et al., 
1986].

  The synaptic effects of 5-HT are terminated by reup-
take of the neurotransmitter into the presynaptic nerve 
terminals through a high-affinity 5-HT transporter 
(SERT). After reuptake, 5-HT is subsequently degraded 
by the enzymatic catabolic activity of monoamine oxi-
dase. A number of neurotherapeutic drugs used in the 
treatment of depression and anxiety disorders act by in-
hibiting reuptake of the transmitter by SERT [Blakely et 
al., 1994; Jayanthi and Ramamoorthy, 2005; White et al., 
2005].

  Developmental Cocaine Exposure Alters 

Neurobehavioral Development 

 The primary pharmacological sites of action of co-
caine and other psychostimulants in the brain are the 
high-affinity transporters for DA, 5-HT and NE. Co-
caine binds to these transporter proteins and blocks the 
reuptake of the neurotransmitters; thus, prolonging their 
time in the extracellular space. This permits the mono-
amine to bind to its receptor proteins for more sustained 
periods, resulting in excessive activation of these recep-
tors, particularly those located extrasynaptically. Co-
caine, a drug of abuse in adolescents and adults, produc-
es a host of neuroadaptations in the brain of the user 
which are associated with addiction [Hyman and Malen-
ka, 2001], and can potently modulate monoaminergic 
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systems during prenatal development if the drug is used 
during pregnancy [Malanga and Kosofsky, 2003; Stan-
wood and Levitt, 2004].

  Clinical reports on the impact of prenatal cocaine ex-
posure have been diverse, as some suggest gross physical 
malformations, others observe specific deficits in cogni-
tive and emotional development, and yet others indicate 
no detectable effects. The variable outcomes are at least 
in part the result of important covariates such as the tim-
ing and amount of cocaine use during pregnancy, poly-
drug use, and the quality of pre- and postnatal care 
[Karmel and Gardner, 1996; Richardson et al., 1996; Gin-
gras and O’Donnell, 1998; Dow-Edwards et al., 1999; 
Mayes et al., 2003; Singer et al., 2004]. In particular, pre-
natal cocaine exposure can have long-lasting negative ef-
fects on cognitive and attention systems. For example, 
prenatal cocaine exposure predicts poorer perceptual 
reasoning IQ compared to nonexposed counterparts 
[Singer et al., 2008], impairments in procedural learning 
[Mayes et al., 2007], increased behavioral problems in 
school [Bada et al., 2007] and increased risk of opposi-
tional defiant disorder and attention-deficit hyperactiv-
ity disorder [Linares et al., 2006].

  Different animal models, designed to mimic human 
drug use during gestation, confirm that prenatal cocaine 
exposure results in specific and long-lasting behavioral, 
cellular and molecular changes [Mayes, 2002; Lidow, 
2003; Harvey, 2004; Stanwood and Levitt, 2004]. How-
ever, the extent and nature of the cellular alterations vary 
across model systems. Deficits range from alterations in 
basic processes of neocortical development that result in 
altered cell production, migration and genetic regulation 
[Gressens et al., 1992; Lidow, 1995b; Lidow and Song, 
2001; Crandall et al., 2004; Ren et al., 2004; Guerriero et 
al., 2005; Lee et al., 2008; Novikova et al., 2008], to more 
subtle changes in cellular morphology and molecular sig-
naling cascades within DA-rich regions of the cerebral 
cortex [Jones et al., 1996; Jones et al., 2000; Stanwood et 
al., 2001a; Stanwood and Levitt, 2003; Stanwood and 
Levitt, 2007]. In contrast to the cellular effects, consistent 
behavioral changes including deficits in attention tasks, 
emotional reactivity, and the reinforcing properties of 
drugs of abuse that correspond with the human clinical 
literature are observed in a variety of animal models of 
prenatal cocaine exposure [Morrow et al., 2002; Rocha et 
al., 2002; Gabriel et al., 2003; Stanwood and Levitt, 2003; 
Thompson et al., 2005b; Malanga et al., 2008].

  One unique animal model of prenatal cocaine expo-
sure, to study the mechanisms underlying the complex 
long-term adaptive changes and the functional outcomes 

of in utero cocaine exposure, utilizes a low-dose regimen 
of intravenous prenatal cocaine exposure in the rabbit, 
which was initially selected for ease of intravenous ad-
ministration. Furthermore, the pharmacokinetic profile 
of intravenous cocaine in the rabbit [Parlaman et al., 
2007] closely models what is seen when human users 
abuse cocaine [Evans et al., 1996; Jenkins et al., 2002]. A 
number of studies have established that the prenatal dos-
ing is not generally teratogenic, nor does it impact basic 
developmental parameters such as kit mortality, litter 
size, sex or growth rates [Wang et al., 1995b; Jones et al., 
1996; Wang et al., 1996; Murphy et al., 1997]. However, 
through control of length of drug exposure, age at drug 
exposure, and dosing, we have delineated a critical win-
dow of time (ED 16–25) during which exposure to co-
caine affects behavior, morphology and cellular composi-
tion [Stanwood et al., 2001a; Stanwood et al., 2001b; Stan-
wood and Levitt, 2003; Thompson et al., 2005b]. This 
window of time corresponds to the emergence of pre- and 
postsynaptic components of the DA system in the cere-
bral cortex [Stanwood et al., 2001a].

  Neuroanatomical and molecular analyses in this mod-
el have delineated a number of highly specific changes in 
DA-rich cortical areas, including changes in GABA con-
tent, calcium binding protein expression and morpho-
logical changes in pyramidal cells [Murphy et al., 1997; 
Jones et al., 2000; Stanwood and Levitt, 2001; Stanwood 
et al., 2001b; Stanwood et al., 2006; Stanwood and Levitt, 
2007]. The specific neuronal morphology alterations in-
clude a 40–50% increase in pyramidal neuron apical den-
drite length within DA-rich cortical areas [Jones et al., 
2000], which are involved in cognition and executive 
functioning tasks, including attention [Goldman-Rakic, 
1996; Collette and Van der Linden, 2002; Elliott, 2003; 
Elston, 2003; Clark et al., 2004].

  Consistent with the regional selectivity in the anatom-
ical findings, extensive behavioral characterization of 
rabbits following in utero exposure to cocaine suggest 
that the behaviors disrupted appear to be limited to those 
mediated via select DA-rich cortical and subcortical re-
gions [Romano and Harvey, 1996; Simansky et al., 1998; 
Gabriel et al., 2003; Stanwood and Levitt, 2003; Thomp-
son et al., 2005b]. For example, these animals exhibit de-
creases in spontaneous alternation as measured by the 
Y-maze following prenatal cocaine exposure [Thompson 
et al., 2005b]. This decrease in attention is not accompa-
nied by changes in open-field behavior or 2-object recog-
nition. Additionally, offspring exposed to prenatal co-
caine show a decreased number of head bobs, a measure 
of stereotypy, following a single injection of amphet-
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amine, and display a blunted preference for cocaine in a 
conditioned place preference paradigm [Stanwood and 
Levitt, 2003; Thompson et al., 2005a].

  Molecular analyses have determined that the DA D 1  
receptor exhibits permanently reduced coupling to its 
cognate G protein, G s �  , following prenatal cocaine expo-
sure [Wang et al., 1995a; Friedman et al., 1996; Jones et 
al., 2000]. This reduction in coupling is a result of DA
D 1  receptor remaining internalized and not trafficking 
properly to the cell membrane where it would then inter-
act with G s �   [Stanwood and Levitt, 2007]. Adult rabbits 
exposed to cocaine prenatally also exhibit greatly reduced 
psychostimulant-induced stereotypies, consistent with 
diminished D 1  receptor signaling [Simansky and Kachel-
ries, 1996; Stanwood and Levitt, 2003]. It is important to 
emphasize that other G s �  -coupled receptor signaling is 
not altered, nor is D 2  coupling altered in the DA-rich 
brain regions [Wang et al., 1995a; Friedman et al., 1996]. 
This selective reduced coupling of the D 1  receptor has 
been implicated in the cellular, morphological and be-
havioral changes observed following prenatal cocaine ex-
posure in our model. Additional evidence to support a 
role for altered D 1  receptor signaling at the cellular level 
comes from our recent study of the D 1  receptor knockout 
mouse, which exhibits similar cellular and morphologi-
cal changes to the prenatal cocaine exposed rabbits [Stan-
wood et al., 2005].

  Effects of Developmental Amphetamine/

Methamphetamine Exposure 

 Although amphetamine and methamphetamine use 
and abuse has been present for decades, there has been 
comparatively (to cocaine) little clinical and basic re-
search on its effects on brain development. Reports have 
only recently emerged from a large prospective study 
[Smith et al., 2006; Smith et al., 2008]. Early clinical re-
ports emphasized increases in premature delivery, pla-
cental abruption, cardiac defects and fetal distress [for 
reviews, see Plessinger, 1998; Smith et al., 2006]. In utero 
methamphetamine-exposed children are at high risk of 
growth impairment [Smith et al., 2003] and are 3.5-fold 
more likely to be smaller than average for gestational age 
[Smith et al., 2006], perhaps not surprising given the an-
orectic effects of the drug.

  Even fewer studies have examined neurobehavioral 
outcomes specifically. In neonates, methamphetamine 
exposure is associated with lower arousal, more lethargy 
and increased physiological stress [Smith et al., 2008]. In 

a small retrospective study, significant deficits in visuo-
motor integration, attention and memory have been ob-
served and linked to smaller volumes of the putamen, 
globus pallidus and hippocampus [Chang et al., 2004]. 
Imaging studies also point to alterations in striatal en-
ergy metabolism in children exposed gestationally [Smith 
et al., 2001; Chang et al., 2007]. It will clearly be important 
to continue to follow these children for impairments of 
this nature as they develop and enter schools.

  Animal models utilizing a wide variety of species, dos-
es and timing of exposure have been used to investigate 
the consequences of prenatal exposure on development. 
At high doses, methamphetamine induces prominent 
teratogenic effects on the neonate [Nora et al., 1965; Ka-
sirsky, 1971]. A very good animal model of third trimester 
exposure has been developed by Vorhees et al. [2000, 
2007], who inject neonatal rat pups during the ages span-
ning PD 11–21 with multiple spaced injections. This ex-
posure paradigm produces selective effects on spatial 
learning and memory [Vorhees et al., 2000; Williams et 
al., 2003; Vorhees et al., 2007], and both transient and 
permanent effects in stress hormones and brain biogenic 
amines [Williams et al., 2005; Schaefer et al., 2008]. In-
terestingly, neonatal methamphetamine exposure does 
not alter striatal DA levels [Schaefer et al., 2008], very un-
like its effect in adult animals, where it produces long 
lasting decreases in DA [Cappon et al., 2000].

  Other groups have reported changes in the structure 
and myelination of the optic nerve [Melo et al., 2006, 
2008], altered seizure susceptibility [Slamberova et al., 
2008] and reduced spontaneous motor activity [Cho et 
al., 1991; Weissman and Caldecott-Hazard, 1993] follow-
ing prenatal methamphetamine exposure. Long-lasting 
changes in the function of the NE [Nasif et al., 1999] and 
5-HT [Tavares et al., 1996] systems have also been de-
scribed following in utero amphetamine exposure.

  Effects of Developmental MDMA Exposure 

 3,4-Methylenedioxymethamphetamine (MDMA, ec-
stasy) is a derivative of methamphetamine acting primar-
ily on the 5-HT system to increase 5-HT release. In adults, 
MDMA produces enhanced mood, euphoria, heightened 
sensory awareness and sympathetic arousal, including 
tachycardia and hyperthermia [Lyles and Cadet, 2003]. 
At high doses, MDMA is capable of neurotoxicity. MDMA 
also passes through the placental barrier to enter into the 
fetal circulation [Campbell et al., 2006], suggesting that 
MDMA use during pregnancy is capable of inducing ef-
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fects in the offspring. 5-HT has well-documented effects 
on early development of the brain and other organs [Cas-
es et al., 1996; Bonnin et al., 2007; Cote et al., 2007], rais-
ing concerns about deleterious effects of MDMA use dur-
ing pregnancy.

  In fact, a preliminary study of prenatal MDMA-ex-
posed children demonstrated increased risks of cardio-
vascular and musculoskeletal abnormalities following 
exposure during the first trimester [McElhatton et al., 
1999]. Prenatal exposure in animal models and culture 
systems also suggest deleterious effects of MDMA on the 
development of dopaminergic and serotonergic neurons 
[Won et al., 2002; Koprich et al., 2003; Galineau et al., 
2005] and increases in locomotor activity in adolescent 
offspring [Koprich et al., 2003]. Third trimester equiva-
lent exposure in rats also leads to learning difficulties 
[Broening et al., 2001; Williams et al., 2003]; similar to the 
effects of the 5-HT releaser  D -fenfluramine [Morford et 
al., 2002]. These effects may be due to increased sensitiv-
ity of 5-HT 1A  receptors [Crawford et al., 2006], and were 
recently reviewed in exquisite detail [Piper, 2007; Skelton 
et al., 2008].

  Potential Developmental Impact of Therapeutic 

Medications 

 Biogenic amine systems are also targeted by psychoac-
tive medications, including antidepressant and antipsy-
chotic drugs. To test for a possible developmental role of 
the 5-HT system in establishing anxiety circuitry, Hen 
and colleagues generated a conditional knockout mouse 
that allowed for temporally restricted rescue of postsyn-
aptic 5-HT 1A  receptors in the cerebral cortex and hippo-
campus [Gross et al., 2002]. Using this strategy, they dem-
onstrated that initiating expression of the receptor after 
PD 21 resulted in increased anxiety levels identical to 
constitutive 5-HT 1A  receptor knockout animals. Con-
versely, earlier expression of the 5-HT 1A  receptor, during 
the first 3 postnatal weeks, produced mice with anxiety 
levels that were indistinguishable from wild-type ani-
mals, even if the receptor was turned off in adulthood. 
Administration of the selective 5-HT reuptake inhibitor 
fluoxetine from PD 4 to 21 also leads to permanent chang-
es in anxiety behavior [Ansorge et al., 2004]. These find-
ings indicate that normal 5-HT activity during early 
postnatal development in the rodent is crucial to the es-
tablishment of normal anxiety-modulating circuits in the 
brain, and that both genetic and environmental factors 
are capable of influencing these circuits.

  Consistent with the rodent models, data from human 
studies suggest that baseline anxiety levels are influenced 
early in life. By 2 years of age, most children have estab-
lished cohesive patterns of response to novel environ-
ments, as measured by behavioral inhibition. These mea-
sures appear to be stable over many years [Hirshfeld et al., 
1992; Rosenbaum et al., 1993; Schwartz et al., 1999; see 
also Degnan and Fox, 2007], and can predict one’s future 
risk of anxiety disorders [Kagan and Snidman, 1999; Ka-
gan et al., 2007]. Not surprisingly, polymorphisms in 5-
HT system-related genes have all been associated with 
anxiety- and depression-related symptoms [Albert and 
Lemonde, 2004; Kim et al., 2006; Walderhaug et al., 2007; 
Dannlowski et al., 2008; Murphy and Lesch, 2008]. Many 
prominent psychotherapeutics target the 5-HT system, 
and are utilized for depression and anxiety among preg-
nant and nursing mothers. Published literature to date 
suggests only modest alterations in neonatal outcome 
[Pearson et al., 2007; Andrade et al., 2008; Maschi et al., 
2008; Oberlander et al., 2008], but further study of the 
neurobehavioral consequences of antidepressant expo-
sure on the developing fetus and infant are clearly need-
ed. Possible long-lasting changes in drug-seeking behav-
ior following maternal 5-HT reuptake inhibitor exposure 
have also been recently suggested [Forcelli and Hein-
richs, 2008].

  Antipsychotic drugs are another group of therapeutics 
needed by some pregnant women and young people suf-
fering from schizophrenia and other psychotic illnesses. 
Again, however, these drugs have potent effects on the 
development of aminergic systems, especially on DA re-
ceptors [Rosengarten and Friedhoff, 1979; Moran-Gates 
et al., 2006]. These drugs can also produce long-lasting 
changes in neurochemistry, brain architecture, and be-
havior [Scalzo and Spear, 1985; Scalzo et al., 1993; Singh 
and Singh, 2001; Rosengarten and Quartermain, 2002; 
Singh and Singh, 2002; Wang et al., 2006].

  Another intriguing and unexpected example has come 
from developmental studies of terbutaline, a  � -adreno-
ceptor agonist used to arrest preterm labor. However, the 
drug also crosses the placenta and blood-brain barrier. 
Early postnatal exposure to terbutaline in rats, a period 
corresponding to the third trimester in humans, produc-
es long-lasting alterations in NE innervation and recep-
tor expression in multiple brain regions [Slotkin et al., 
1990; Slotkin et al., 2001; Rhodes et al., 2004; Aldridge et 
al., 2005; Slotkin and Seidler, 2007a], as well as increasing 
the toxic consequences of subsequent pesticide exposure 
(see ‘Environmental Agents/Toxins’) [Meyer et al., 2005]. 
Increased microglial activation, behavioral abnormali-

D
ow

nloaded from
 http://w

w
w

.karger.com
/dne/article-pdf/31/1-2/7/2627922/000207490.pdf by guest on 24 April 2024



 Neurodevelopmental Effects of Drugs 
and Toxicants 

Dev Neurosci 2009;31:7–22 15

ties and alterations in 5-HT systems have also been re-
ported [Aldridge et al., 2005; Zerrate et al., 2007]. In hu-
mans, it has been suggested that terbutaline treatment 
during pregnancy may lead to an increased incidence of 
autism spectrum disorder in offspring [Connors et al., 
2005]; similarly gain-of-function polymorphisms in the 
 �  2 -adrenergic receptor which produce receptors that are 
resilient to desensitization have been associated with au-
tism [Connors et al., 2005; Cheslack-Postava et al., 
2007].

  Environmental Agents/Toxins 

 Thousands of new chemicals are produced each year, 
about 25% of them may be neurotoxic, but only about 
10% of them will ever be tested for such activity [Con-
nors et al., 2008]. Long-lasting neurodevelopmental ef-
fects on biogenic amine systems and their targets have 
been described for some of these chemicals and environ-
mental contaminants, including lead [Szczerbak et al., 
2007; Nowak et al., 2008], polychlorinated biphenyls 
[Bushnell et al., 2002; Kuchiiwa et al., 2002], polybromi-
nated diphenyl ethers [Dingemans et al., 2007; Llansola 
et al., 2007; Alm et al., 2008; Gee and Moser, 2008], py-
rethroids [Nasuti et al., 2007], organic solvents [Hou-
gaard et al., 1999; Gospe and Zhou, 2000; Bowen and 
Hannigan, 2006], and synthetic estrogens such as bi-
sphenol-A [Suzuki et al., 2003; Laviola et al., 2005; Miya-
gawa et al., 2007]. These ‘nondrug’ environmental fac-
tors can interact with developmental drug exposures 
and/or genetic factors to produce complex effects on 
brain formation and function, often at concentration 
levels that appear to be harmless for adults. For example, 
perinatal exposure to bisphenol-A can produce long-
lasting potentiation of D 1  DA receptor function, super-
sensitivity to methamphetamine and decreases in the ex-
pression of genes crucial for DA neuron development 
and survival, such as sonic hedgehog and glial-derived 
neurotrophic factor [Suzuki et al., 2003; Suzuki et al., 
2005; Miyagawa et al., 2007]. Even artificial food colors 
and preservatives such as sodium benzoate appear to 
contribute to hyperactivity in children [McCann et al., 
2007]. It is well beyond the scope of this review to de-
scribe all of these compounds in detail [for more detailed 
reviews, see Costa et al., 2004; Rodier, 2004; Slotkin, 
2004; Bowen and Hannigan, 2006; Johansson et al., 2007; 
Moser, 2007], but we will very briefly discuss 2 classes of 
compounds with likely effects on the development of 
brain biogenic amines and their targets.

  Organophosphate pesticides inhibit cholinesterases, 
and produce cholinergic overstimulation. In addition, 
developmental exposure to the compounds, such as 
chlorpyrifos, produces effects on serotonergic synaptic 
function [Slotkin and Seidler, 2007b; Moreno et al., 2008; 
Roegge et al., 2008]. Most exposure occurs through di-
etary intake [Lu et al., 2008]. Importantly, many of these 
effects on 5-HT and 5-HT-mediated behaviors, such as 
the development of emotional systems, occur at doses be-
low the threshold for cholinesterase inhibition [Levin et 
al., 2002; Slotkin et al., 2006; Roegge et al., 2008]. Pre- and 
perinatal exposure also produces long-lasting changes in 
components of brain DA systems, and even increases cell 
loss at later developmental times following exposure to 
dopaminergic neurotoxins used to model Parkinson’s 
disease [Richardson et al., 2006]. Recent studies identify-
ing functional polymorphisms affecting chlorpyrifos 
metabolism [Berkowitz et al., 2004] and documenting de-
creases in cognitive development in children exposed to 
chlorpyrifos during gestation suggests that this is a very 
significant human health problem [Rauh et al., 2006; En-
gel et al., 2007].

  Lastly, we describe data regarding manganese, a com-
mon naturally occurring heavy metal and essential nutri-
ent. Manganese is crucial for maintaining the proper 
function and regulation of many biological processes, but 
is also used in numerous industries including welding, 
mining and formulating gasoline additives. Manganese 
is readily transported into the brain, either as a free ion 
species or as a nonspecific protein-bound species [Asch-
ner and Gannon, 1994]. Chronic manganese overexpo-
sure results in the onset of a very specific neurological 
phenotype, known as manganism, which presents with 
motor symptoms resembling those of Parkinson’s disease 
[Lee, 2000; Normandin et al., 2002; Guilarte et al., 2006; 
Aschner et al., 2007]. Similar symptoms have also been 
described in adults and children receiving prolonged to-
tal parenteral nutrition [Kafritsa et al., 1998; Nagatomo 
et al., 1999; Hsieh et al., 2007], which contains high 
amounts of manganese [Erikson et al., 2007].

  Emerging data from both animal and human studies 
suggest a potent effect of developmental manganese ex-
posure on brain development [Erikson et al., 2007; Ljung 
and Vahter, 2007]. For example, manganese exposure 
during pregnancy and/or early postnatal life produces al-
terations in locomotor activity, brain monoamine levels, 
oxidative stress and brain morphology [Pappas et al., 
1997; Tran et al., 2002; Erikson et al., 2006; Reichel et al., 
2006]. In children, preliminary studies have associated 
elevated manganese content in drinking water with de-
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creased cognitive and attentional functions [Wasserman 
et al., 2006; Bouchard et al., 2007]. Increased prenatal 
manganese exposure has also been linked to childhood 
behavioral disinhibition [Ericson et al., 2007]. Moreover, 
iron deficiency can enhance brain manganese accumula-
tion, even in the absence of excess manganese in the en-
vironment, and produce long-lasting changes in metal 
concentrations and transporters in the brain [Garcia et 
al., 2007]. These data warrant a reassessment of guideline 
values for acceptable manganese levels and much more 
detailed investigations into the risks of environmental 
manganese exposure.

  Conclusions 

 The mammalian brain develops over a protracted pe-
riod of time. Neurodevelopment is affected by both ge-
netic and environmental influences, within the context 
of evolving time. Environmental influences can have ef-
fects on brain architecture both prenatally, within the 

mother’s womb, and by the physical and chemical envi-
ronment experienced after birth. Compounds which af-
fect the construction of brain circuits include legal and 
illicit psychoactive drugs, used either medicinally or rec-
reationally, as well as environmental toxicants and natu-
ral contaminants. Biogenic amine systems may be par-
ticularly sensitive to such modulation. Resulting disrup-
tions in brain development sometimes do not emerge 
until later in life, and may be produced at dose levels that 
are relatively harmless for adults. This makes the study of 
these long-term impacts very challenging, but also very 
crucial. Scientists must continue to inform the public and 
policy makers of these complex and important issues.
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