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and mitogen-activated protein kinases. Finally, we discuss 
emerging data on both the supportive and adverse roles of 
inflammation in plasticity and repair after stroke. 
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 Introduction 

 The pathophysiological role of acute inflammation in 
adult experimental stroke models has been demonstrated 
over the years and the relationships between the presence 
of reperfusion, gender, genetic background and the ex-
tent, timing and consequences of injury have been large-
ly established  [1] . The results of clinical trials using anti-
inflammatory drugs have been disappointing, however, 
indicating the complexity of the problem. Two concepts 
that dominated the neuroinflammation field for a long 
time – i.e. that the CNS is ‘immunologically privileged’ 
due to a relatively impenetrable blood-brain barrier (BBB) 
and that inflammation necessarily exacerbates neurode-
generation – have recently been challenged by the dem-
onstration of a substantial cross-talk between peripheral 
and local immune components  [2, 3]  and a contribution 
of numerous inflammation-associated pathways in pro-
tection against chronic neurodegenerative diseases and 
repair  [4–6] .
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 Abstract 

 The immature brain is prone to hypoxic-ischemic encepha-
lopathy and stroke. The incidence of arterial stroke in new-
borns is similar to that in the elderly. However, the pathogen-
esis of ischemic brain injury is profoundly affected by age at 
the time of the insult. Necrosis is a dominant type of neuro-
nal cell death in adult brain, whereas widespread neuronal 
apoptosis is unique for the early postnatal synaptogenesis 
period. The inflammatory response, in conjunction with ex-
citotoxic and oxidative responses, is the major contributor to 
ischemic injury in both the immature and adult brain, but 
there are several areas where these responses diverge. We 
discuss the contribution of various inflammatory mecha-
nisms to injury and repair after cerebral ischemia in the con-
text of CNS immaturity. In particular, we discuss the role of 
lower expression of selectins, a more limited leukocyte trans-
migration, undeveloped complement pathways, a more rap-
id microglial activation, differences in cytokine and chemo-
kine interplay, and a different threshold to oxidative stress 
in the immature brain. We also discuss differences in activa-
tion of intracellular pathways, especially nuclear factor  � B 
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  One frequently overlooked aspect in the discussion of 
the role of inflammation in stroke is the impact of age, 
not only in the aging brain, but perhaps even more so in 
the immature brain. Inflammation is thought to play a 
substantial role in hypoxic-ischemic encephalopathy 
(HIE) and focal arterial stroke in human infants (re-
viewed in Ferriero  [7] ). Inflammation contributes differ-
ently to the pattern of injury in the infant brain, with 
regard to affected regions and vulnerable cell types, de-
pending on whether the ischemic event occurs in a term 
or preterm baby and whether infection is present during 
HIE or precedes HIE (reviewed in Ferriero  [7] , Volpe  [8]  
and McQuillen and Ferriero  [9] ).

  Recent advances in the field of perinatal stroke  [7, 10]  
have revealed that, strikingly, the incidence of arterial 
stroke in newborns, about 1/4,000 term babies  [11] , is sim-
ilar to that in the elderly. Although many intracellular 
mechanisms of neurodegeneration are shared across age 
groups, immaturity critically affects the brain’s suscepti-
bility to excitotoxic, oxidative and ischemic injury, espe-
cially during particular postnatal developmental stages 
(reviewed in Khwaja and Volpe  [12] , Wolfberg et al.  [13]  
and Vexler and Ferriero  [14] ). While a rodent model of 
hypoxia-ischemia (HI), a model relevant to HIE in the 
term baby, has been available for decades  [15] , the ability 
to study age-appropriate models of ischemic stroke at term 
was not possible until about a decade ago when models of 
transient  [16, 17]  and permanent  [18]  middle cerebral ar-
tery occlusion (MCAO) in postnatal day 7 (P7) rats were 
established. Therefore, a substantially more limited set of 
data are available for neonatal compared to adult focal 
stroke. Age differences in the mechanisms of stroke, some 
of them very striking, stem from immaturity of the CNS, 
including differences in the cross-talk between excitotox-
ic, oxidative and inflammatory injury mechanisms, creat-
ing ‘windows of susceptibility’ to ischemic and excitotoxic 
injury during embryonic and early postnatal brain devel-
opment  [7] . The mechanisms of ischemia-related damage 
in preterm babies (white matter lesions) have recently been 
reviewed  [12, 13]  and will not be discussed.

  We will review data on specific aspects of neuroin-
flammation after stroke in relation to both acute injury 
and repair and will emphasize known similarities and 
differences in adult and neonatal rodents. Throughout 
the review we will first describe data on focal cerebral 
ischemia in the adult and then in the neonate after either 
focal stroke (if such data are available) or after HI. When 
discussing data obtained in two types of neonatal models, 
HI or MCAO, models used to mimic hypoxic encepha-
lopathy and arterial stroke in term babies, respectively, 

we will not emphasize the commonalities and differences 
in the mechanisms of injury between the two models, 
which exist due to the presence of systemic hypoxia in the 
HI model and different location of the disrupted cerebral 
blood flow, but focus on the effects of immaturity on in-
flammation and injury after brain ischemia.

  Inflammation and Acute Injury after Experimental 

Stroke 

 Blood-Brain Barrier 
 The integrity of the BBB is controlled by a number of 

different and partially independent components, includ-
ing the presence of extracellular matrix, tight junctions, 
pericytes and astrocyte end feet  [19, 20] . Leukocyte entry 
into the CNS is restricted due to the BBB and the few leu-
kocytes that are present in the CNS enter mostly through 
the cerebrospinal fluid and subarachnoid space  [2] .

  In experimental adult stroke, the BBB is disrupted 
with the spatial-temporal extent of breakdown depen-
dent on many factors, including increased levels of adhe-
sion molecules and degradation of components of the 
basal lamina by metalloproteinases (MMPs)  [21, 22] , lo-
cally and systemically produced cytokines  [23, 24] , and 
activation of cells in the brain  [1, 25] . The effects of indi-
vidual factors on BBB disruption after injury will be dis-
cussed later in this review.

  Despite the common belief that the BBB in the neonate 
is substantially more permeable than in the adult, tight 
junctions are present early in embryonic development 
 [26] , restricting entrance of proteins into the brain in a 
controllable fashion. By birth the BBB is functional with 
no fenestrations  [19] . Maturation of the BBB can substan-
tially affect leukocyte passage from blood to parenchyma 
 [19, 27] .

  A rather complex and unexpected effect of inflamma-
tory stimuli on BBB integrity and leukocyte transmigra-
tion in rats has been reported during the first 3 weeks of 
life. Comparison of brain region sizes with accumulated 
IgG following intrastriatal injections of IL-1 �  or TNF- �  in 
rats of different ages shows profoundly higher IgG accu-
mulation in 21-day-old than in 2-hour-old rat pups  [28–
31] . These data demonstrate that at birth BBB is function-
al and is in fact more resistant to inflammatory stress than 
juvenile brain. Age differences in the dynamics of BBB 
permeability as measured by IgG accumulation have been 
reported within 24 h after HI between P7 and P30 rats. 
Earlier IgG accumulation after HI has been found in P7 
rats compared to P30 rats, indicating that BBB breakdown 
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is more rapid in the younger rodents  [32] . Comparisons of 
IgG accumulation between wild-type and neonatal MMP-
9 knockout mice 24 h after HI have shown reduced IgG 
accumulation in animals that lack MMP-9  [33] , suggesting 
that BBB opening occurs shortly after HI and that MMP-9 
contributes to this change. Our comparative study in P7 
and adult rats subjected to transient MCAO shows that 
Evans blue extravasation, a measure of paracellular diffu-
sion, the main path for bulk proteins and leukocytes to 
enter the brain, is low within 24 h after reperfusion in neo-
natal but is profoundly increased in adult rats  [34] . A large-
ly preserved paracellular diffusion in the latter study is as-
sociated with increased expression of several tight junc-
tion proteins  [34] , rather than with decreased expression 
seen in adult rats after similar injury. As we describe later, 
the lower extent of leukocyte extravasation after ischemic 
injury in neonatal rats  [35, 36]  may contribute to age dif-
ferences in structural and functional disturbances of the 
BBB after ischemia.

  Leukocytes and Adhesion Molecules 
 In humans, genomic profiling shows that neutrophils 

are the predominant source of released cytokines, che-
mokines and other molecules that activate the periph-
eral white blood cells after stroke  [37] . Neutrophils are 
the earliest leukocyte subpopulation in the brain after 
stroke in adults (reviewed in Wang et al.  [38] ). They can 
contribute to the opening of the BBB in adult stroke, as 
has been shown by reduced injury and BBB disruption 
in chimeric mice, which lack MMP-9 in circulating im-
mune cells but not in MMP-9-containing circulating im-
mune cells  [22] . They can also enhance injury via in-
creased reactive oxygen species (ROS) production  [39] , 
acting both from the periphery and upon extravasation 
into injured tissue.

  Leukocyte migration depends on the stepwise interac-
tion between these cells and the vascular endothelium, 
including three main groups of cell adhesion molecules: 
selectins, the immunoglobulin superfamily and integrins 
 [40] . The patterns of recruitment of monocytes and neu-
trophils are cytokine-specific: IL-1 �  triggers recruitment 
of neutrophils whereas TNF- �  induces predominantly 
monocyte infiltration  [41] .

  Inhibition of the early steps of leukocyte adhesion 
with antibodies or inhibitors of P- and E-selectin im-
proves histological and neurological outcomes in rats and 
in mice deficient in P-selectin  [42] , whereas mice overex-
pressing P-selectin have exacerbation of infarcts  [42] . In-
hibition of neutrophil adhesion and migration do not re-
duce infarct volume in permanent ischemia  [43] .

  Members of the immunoglobulin superfamily (such 
as ICAM-1),  � - and  � -integrins, and adhesion molecule 
families are involved in various aspects of communica-
tion between leukocytes and endothelium and extracel-
lular matrix. Blockade or genetic depletion of ICAM-1 or 
the integrins CD11b, CD18, or both, improve outcome 
from experimental stroke in adults, in association with 
decreased neutrophil infiltration (reviewed in Wang et al. 
 [38] ), but no data are available for neonates.

  In contrast to stroke in the adult, neutrophils do not 
transmigrate into the injured P7 brain following HI with-
in 42 h  [35]  or they are present in the parenchyma only 
briefly  [44] . Rather, neutrophils accumulate within ves-
sels. This lack of transmigration in the neonate is unlike-
ly to be due to an intrinsic inability of neutrophils to 
transmigrate into the brain, as they do transmigrate fol-
lowing permanent MCAO  [45] . Although the effect of 
immaturity on leukocyte-endothelium interaction after 
injury is not well understood, P-selectin expression on 
endothelial cells is lower in the developing compared to 
adult brain. Also, there may be a less efficient adhesion of 
neutrophils to P-selectin  [46, 47] , which accounts for the 
more restricted neutrophil infiltration in immature com-
pared to adult brain after ischemia. Circulating or mar-
ginated neutrophils, however, can contribute to HI injury 
in the newborn period since pups with neutrophils de-
pleted prior to HI have reduced injury  [36] .

  Extracellular Matrix 

 The MMPs, a family of zymogen proteases critically 
involved in the remodelling of the extracellular matrix, 
have been implicated in the pathophysiology of acute 
brain damage. MMP-9 plays a dual role in adult
stroke – a damaging role acutely after stroke  [21, 48]  and 
a beneficial role in repair  [49] . Increased expression of the 
pro- and active MMP-9 after adult focal stroke in rats 
temporally and spatially correlates with a loss of BBB in-
tegrity  [21, 48] . Upregulation of brain MMP-9 levels by 
thrombolytic therapy with tissue plasminogen activator 
poses risks of cerebral hemorrhage after ischemic stroke 
 [50] . A balance between MMPs and their inhibitors is im-
portant for the evolution of ischemic injury  [51] . MMP-9 
inhibition  [52]  or deletion  [22, 48]  reduces postischemic 
BBB disruption. MMP-2 seems to have a lesser effect on 
acute brain injury after focal ischemia but may play a role 
in recovery.

  MMP-9 induction occurs in several phases following 
HI in neonatal rodents  [53] . Excessive MMP-9 activation 
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early after HI is deleterious to the immature brain, as 
demonstrated by a smaller injury size in MMP-9 knock-
out mice  [33]  and following inhibition of this protease 
with AG3340  [54] . Both reduced proteolysis of the extra-
cellular matrix and cytokine release are the likely under-
lying mechanisms of protection. Hyperoxia is also injuri-
ous to the neonatal brain partly by inducing inflamma-
tion and MMP-2/9 activation  [215] . Erythropoietin 
administration, which reduces accumulation of inflam-
matory mediators and MMP  [215] , provides both short- 
and long-term protection to the immature brain  [216] . 
The adverse effect of prolonged MMP-9 inhibition on mi-
gration of neuroblasts from the subventricular zone 
(SVZ) has been shown in a model of adult stroke  [49] , but 
it is currently unknown whether late phases of MMP-9 
induction  [53]  affect repair after neonatal HI or focal 
stroke. Other MMPs are also involved in ischemic brain 
damage. For example, MMP-12 mRNA and protein ex-
pression are significantly increased in the neonatal HI 
injured brain, and the levels of MMP-12 postively corre-
late with extent of tissue loss  [217] .

  Complement System 

 The complement system is a potent mediator of in-
flammation. It is activated by three different pathways – 
C1q-dependent (classical), mannose-binding-protein-
dependent and an alternative pathway – and plays an ac-
tive role in ischemic injury in adult brain (reviewed in 
Komotar et al.  [55] ). Complement depletion induced by 
sLex-glycosylated complement inhibitory protein  [56]  or 
by cobra venum factor (CVF)  [57]  significantly reduces 
infarct volume in adult rat. A series of experiments in 
mice deficient in selected complement proteins – C1q, C3, 
C5 – subjected to transient focal cerebral ischemia have 
demonstrated that only C3–/– mice are protected, in-
cluding both reduced infarct volume and neurological 
deficits  [58] . Lack of C3 or inhibition of C3a receptor are 
associated with decreased granulocyte infiltration and 
reduced oxidative stress  [58] , demonstrating that C3 ac-
tivation is the key constituent in complement-related in-
flammatory tissue injury following focal stroke. In im-
mature rodents, complement activation, C3 and C1q de-
position in particular, is seen within hours after HI  [59, 
60] . Pretreatment of neonatal rodents with CVF produc-
es protection in some  [57, 60]  but not all studies  [61] . 
CVF-treated animals show minimal neuronal C3 deposi-
tion but unchanged C9 deposition  [60] . In contrast to the 
adult, deletion of the C1q gene confers a significant and 

long-lasting protection in neonatal mice  [62] , suggesting 
that lack of C1q results in more complete inhibition of the 
cascade. Undeveloped nonclassical pathways of comple-
ment activation, both the mannose-binding protein and 
alternative pathways, which have been demonstrated in 
both human and rodent neonates  [63, 64] , are perhaps the 
key to the observed age-dependent effects. The mecha-
nisms of protection in immature brain are not complete-
ly understood but include decreased C3 deposition and 
reduction in neutrophil activation  [62] .

  Microglia and Macrophages 

 Microglia – resident macrophages – are the main cell 
type providing immunosurveillance in the brain  [65]  
by stimulus-dependent activation in response to injury 
 [66] .

  A large body of data utilizing cerebral ischemia of dif-
ferent severity in adults, with or without administration 
of anti-inflammatory agents, has suggested that a more 
severe ischemic brain injury is associated with higher 
macrophage densities and that attenuation of macro-
phage accumulation is protective (reviewed in Iadecola 
and Alexander  [1] , Wang et al.  [38] , and Jordan et al.  [67] ). 
Production of toxic products, inflammatory cytokines 
and chemokines in particular, is thought to be the pre-
dominant underlying mechanism. Activated microglial 
cells and macrophages can damage various cell types, in-
cluding endothelial cells  [25] , oligodendrocytes  [68] , as-
trocytes  [25]  and neurons  [69] , thereby contributing to 
injury. However, it is still controversial whether microg-
lial activation is beneficial or detrimental after stroke  [70, 
71] . A largely unanswered yet critical question is the rela-
tive contribution of parenchymal microglial cells, infil-
trating macrophages derived from blood monocytes, and 
perivascular monocytes. A study of peripheral macro-
phage depletion did not affect infarct size  [72]  and might 
suggest that brain macrophages, rather than circulating 
cells, are important in ischemic pathogenesis. However, 
neuroprotection by injection of exogenous microglial 
cells into ischemic brain  [71]  or selective depletion of pro-
liferating microglial cells  [70]  points to a beneficial role 
of these cells. Production of IGF-1  [70]  and TNF- �   [73]  
by activated microglia is suggested to contribute to this 
neuroprotection. The ability of microglial cells to modu-
late neurogenesis – hamper  [74]  or support neuronal dif-
ferentiation  [75]  and survival  [76]  – also reveals the com-
plexity of the modulatory role of these cells. Heterogene-
ity within the microglial pool  [77] , the stimulus type and 
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the timing of activation  [78]  are likely to account for an 
array of microglial effects to injury.

  Microglia populate the developing brain by birth  [79]  
and gradually ramify during the first 2 weeks of life, in 
parallel with a decline of ongoing programmed cell death 
during this developmental stage. Macrophages are seen 
in abundance following neonatal HI  [44, 80–82] , produc-
ing inflammatory cytokines  [82]  and high levels of nitric 
oxide (NO)  [83] ; they remain in the injured brain for 
weeks  [45, 84] . Compared to the adults, macrophage ac-
cumulation in neonates is more rapid following transient 
MCAO. A 3- to 8-fold increase in the number of CD68-
positive macrophages in the injured cortex and basal gan-
glia occurs by 24 h after reperfusion  [85] . Based on CD45 
expression, which is relatively low on resting microglia 
and microglia which undergo gradual activation, but is 
high on central monocyte lineage cells, in ischemic-re-
perfused neonatal brain, macrophages derive from resi-
dent microglia rather than invading monocytes within 
24 h after reperfusion  [86] . Different than in adults, the 
developmental status of microglial differentiation  [87]  
and activation  [88]  in the early postnatal period may con-
tribute to the rapid accumulation of activated micro-
glia/macrophages in the injured neonatal brain. Micro-
glial proliferation – another feature of microglial activa-
tion – is robust in neonates after transient MCAO; ap-
proximately a third of CD68-positive cells are newborn 
cells acutely after injury  [85] . Microglia also contribute to 
HI injury in immature brain via complement activation 
and C3 deposition  [60] .

  Pharmacological inhibition of cytokine accumula-
tion, such as exogenous administration of the IL-1 recep-
tor antagonist (IL-1ra)  [89] , or deficiency of inflamma-
tory cytokines, such as IL-18 or IL-6, reduces injury and 
diminishes various signs of inflammation, including mi-
croglial activation  [89, 90] . Minocycline, a tetracycline 
family antibiotic with anti-inflammatory properties, 
protects adult brain against ischemia, in part by inhibit-
ing microglial activation and proliferation  [25, 91, 92] , but 
shows mixed results in neonatal rodents after focal stroke 
or HI  [84, 93, 94] . In the neonatal studies, the notion that 
microglia contribute to, rather than limit acute ischemic 
injury in the immature brain comes from findings that 
reduction in injury is associated with diminished mi-
croglial activation/monocyte infiltration  [93, 95]  whereas 
injury remains unaffected when macrophage accumula-
tion is unchanged  [84] . At the same time, as we discuss 
later, several studies have shown that anti-inflammatory 
drugs thought to protect adult brain by reducing macro-
phage accumulation after stroke, protect neonatal brain 

without directly affecting inflammatory mechanisms as-
sociated with microglial activation  [84, 85, 92, 96, 97] . 
Distinct steps of microglial maturation and differentia-
tion (such as expression of major histocompatibility com-
plex class II, cathepsin and other molecules  [87] ) and the 
propensity of neurons to undergo apoptosis in the devel-
oping brain may account for this age dependence of the 
microglial response.

  Other Inflammatory Cells 
 Mast cells play a role in ischemic injury in adults and 

neonates. In adult mice subjected to transient MCAO and 
treated with either the mast cell inhibitor cromolyn or a 
mast cell degranulating agent, early brain swelling and 
ischemic BBB leakage are reduced by mast cell inhibition 
but enhanced by degranulation of these cells  [98] . Con-
sistent with these findings, mast cell-deficient adult rats 
have less brain swelling, neutrophil infiltration and a 
more preserved BBB in comparison to wild-type animals 
 [98] . Stabilization of mast cells also reduces hemorrhage 
formation after administration of thrombolytics in ex-
perimental ischemic stroke  [99] .

  Mast cells play an injurious role in neonatal HI  [100]  
and focal stroke  [101] . The number of mast cells is rap-
idly and dramatically increased in the ischemic hemi-
sphere  [100, 101] . Stabilization of these cells by cromolyn 
significantly reduces brain damage  [100] . The injurious 
effects of mast cells is thought to depend on TGF- �  and 
IL-9  [102] .

  T and B cells are seen days after injury in adult rodents 
after focal ischemia  [103] , whereas in neonates infiltra-
tion of these cells following neonatal HI and focal stroke 
may be less profound  [44]  or transient  [45] .

  The relative contribution of pro-inflammatory mech-
anisms in astrocytes, as opposed to other roles of these 
cells in ischemic injury, is not well understood but astro-
cytes express the major histocompatibility complex  [104]  
and can upregulate inducible nitric oxide synthase (iNOS) 
 [105]  and cytokine production  [106] .

  Mediators of Inflammation 

 Clinical data on the pathophysiological role of in-
flammatory cytokines in adult human stroke (reviewed 
in Tang et al.  [107]  and Emsley and Hopkins  [108] ) and 
HIE in term babies  [109–111]  continue to emerge. We 
will only discuss experimental data on the role of cyto-
kines and chemokines in injury exacerbation, protection 
and repair.
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  Cytokines 

 Much of the data to date suggests that IL-1 potenti-
ates brain injury in experimental stroke  [112] . In adults, 
IL-1 �  administration increases brain damage  [113]  
whereas mice deficient in both IL-1 isoforms, IL-1 �  and 
IL-1 � , have smaller infarcts compared to wild-type mice 
 [114] . Administration of IL-1ra  [23, 115] , or its overex-
pression by adenoviral vectors  [116]  has been shown to 
reduce neurologic deficits and infarct size in adult ro-
dents following focal stroke. The extent of IL-1 receptor 
1 (IL-1R1)-dependent and IL-1R1-independent effects is 
not fully understood. Protection was not observed in 
IL-1R1-deficient mice following MCAO  [112]  whereas 
observed after HI in the adult  [117] . Reasons for these 
opposing observations are unclear, which, however, in-
dicate the complexities of this line of research. Regard-
less, IL-1 �  activation requires cleavage by caspase-1, 
and blockade of caspase-1 activation and its association 
with other proteins needed for IL-1 �  and IL-18 activa-
tion is protective in a thromboembolic stroke model 
 [118] .

  Following neonatal HI, mRNA  [102]  and protein IL-
1 �   [89]  expression are rapidly increased and their levels 
can be further amplified by concomitant infection or ma-
nipulations within the oxidant pathways  [119] . A major, 
rapid and sustained increase in IL-1 �  protein occurs in 
the circulation shortly after transient MCAO in neonatal 
rats  [86] . The increase is followed by elevated levels of IL-
1 �  in the ischemic-reperfused brain  [86] . IL-1 �  can trig-
ger a local inflammatory reaction and drive neutrophils 
into the brain, but neutrophil accumulation and BBB dis-
ruption induced by IL-1 �  greatly depend on age, as was 
shown by comparing the effects in P0 and P21 rats fol-
lowing intrastriatal IL-1 �  injection  [28] . The scope of the 
IL-1 � -mediated effects on neonatal brain injury is not 
fully understood. Genetic deletion of IL-1 �  or IL-1 �  
alone, or in combination (IL-1 �  �  knockout), does not 
protect 1 week after HI injury  [120] , whereas administra-
tion of IL-1ra, which reverts HI-induced upregulation of 
IL-1 � , protects neonatal brain  [121] . These discrepancies 
may be due to multiple or desynchronized effects of IL-1 
which are all abrogated in knockout mice but not follow-
ing pharmacologic treatment.

  IL-1 �  plays a major role in worsening HI injury after 
infection. Compared to HI alone, increased injury, ele-
vated IL-1 �  and significantly downregulated IL-1ra ex-
pression were observed following HI combined with in-
fection (modeled by lipopolysaccharide exposure)  [121] . 
These results suggest that similar to the adult, the pro-

inflammatory shift of IL-1 �  to IL-1ra might play a role in 
the initiation of perinatal brain damage  [121] .

  TNF- �  exhibits pleiotropic functions in the mature 
ischemic brain  [122] . It is rapidly upregulated in the adult 
brain after ischemia  [123] , with expression initially ob-
served in neurons, then in microglia and some astro-
cytes. While inhibition of TNF- �  reduces ischemic brain 
injury  [124]  and administration of recombinant TNF- �  
protein after stroke onset worsens ischemic brain dam-
age  [125] , mice deficient in TNF receptors (TNFR) have 
larger infarcts  [126] . One reason for this disparity might 
be due to different pathways through which TNF- �  sig-
nals, and the timing of TNF- �  manipulation. Most ef-
fects induced by TNF- �  are mediated by TNFR 1, which 
contains a death domain and may act as a bifurcation 
point for signaling related to cell death or cell survival. 
By reacting with Fas-associated death domain (FADD) 
and caspase-8, TNF- �  may lead to apoptosis. Signaling 
through TNF receptor 2 may lead to anti-inflammatory 
and anti-apo ptotic functions  [127] . Furthermore, pre-in-
sult TNF- �  is associated with a preconditioning response, 
whereas  post-insult TNF- �  administration is detrimen-
tal (reviewed in Hallenbeck  [128] ). Alternatively, the ori-
gin of TNF- �  production may be a key to the observed 
effects. A recent stroke study utilizing TNF- �  knockout 
and bone marrow-chimeric mice with manipulated cells 
of the monocyte lineage demonstrates that TNF- �  is pro-
tective when it is produced in microglial cells but is inju-
rious when produced by leukocytes  [73] .

  The pathophysiological role of TNF- �  in neonatal 
stroke is assumed but has yet to be proven. Neonatal mice 
lacking functional Fas death receptors are resistant to HI 
brain injury  [129] , presumably in part due to its depen-
dence on TNF- � . The extent of TNF- � -mediated effects 
on acute injury may not be profound in the neonate, how-
ever, as the levels of TNF- �  in injured brain remain large-
ly unchanged within 1–24 h following focal stroke  [84] .

  IL-6 is largely thought of as a pro-inflammatory cyto-
kine, but whether it plays a significant role in ischemic 
stroke is far from clear. IL-6-deficient adult mice have 
similar-sized infarcts compared to wild-type mice, sug-
gesting that it does not participate in ischemic pathogen-
esis  [130] . However, other studies suggest either a benefi-
cial  [131]  or detrimental role  [132] . IL-6-stimulated pri-
mary microglial cells increase the production of IL-1 � , 
TNF- � , and Cox-2 and significantly decrease survival of 
neurons  [133] . In the neonatal brain, IL-6 appears tran-
siently several hours after the insult  [134] . Blocking its 
actions protects the neonatal injured brain  [89] . IL-6 has 
been shown to adversely affect neurogenesis after adult 
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stroke  [74] , but its effect on neurogenesis in the immature 
brain is not known.

  IL-18 is a pro-inflammatory cytokine from the IL-1 
family that becomes bioactive upon cleavage by caspase-1 
in a way similar to that for IL-1 � . Genetic deletion of the 
IL-18 gene does not affect injury early after focal stroke 
in the adult  [135] , whereas genetic deletion of caspase-1 is 
protective, as is pharmacological disruption of IL-18 and 
IL-1 �  processing by inhibiting their assembly with cas-
pase-1  [118] . The discrepancy between data obtained us-
ing IL-18 genetic and pharmacologic manipulations in 
adult stroke models is not well understood but may be due 
to elimination of both supportive and injurious effects of 
IL-18 in knockouts.

  In contrast to that in adults, genetic deletion of IL-18 
reduces HI injury in neonates  [90] . Interestingly, IL-18 
deletion more robustly protects the neonatal brain from 
HI than genetic deletion of IL-1 � . Endogenous levels of 
IL-18 in the neonate appear to be higher than in the adult, 
and have thus been suggested to play a role in its age-de-
pendent effects following HI injury  [120] . Increased IL-18 
expression is reported in microglia after neonatal HI
 [90] , but protection achieved by minocycline is not asso-
ciated with reduced brain IL-18 levels in neonatal focal 
stroke  [84] . Comparative data between neonatal and ju-
venile animals subjected to HI show that a higher rate of 
neurogenesis in juvenile rats is associated with higher IL-
18 brain levels; a supportive role of IL-18 in neurogenesis 
has been suggested  [136] .

  Expression of IL-9, a pro-inflammatory Th2 cytokine, 
is developmentally regulated and is the highest in the new-
born brain  [137] . The IL-9/IL-9 receptor pathway has been 
shown to have a direct anti-apoptotic action in the new-
born neocortex  [137] . Little is known about its role in adult 
experimental stroke, but this cytokine has been shown to 
contribute to HI and excitotoxic injury in the developing 
brain  [102, 138, 139] . In particular, IL-9-mediated activa-
tion of mast cells and injury exacerbation has been shown 
in an excitotoxicity model in newborn mice  [138, 139] .

  IL-10 is a pleiotropic Th2 cytokine that is synthesized 
in the CNS and can act on both hematopoietic and non-
hematopoietic cells. It can reverse injury caused by IL-1 � , 
TNF- �  and IL-6  [140] . Exogenous administration  [141]  
and gene transfer of IL-10  [142]  both appear to have a pro-
tective effect in adult global cerebral ischemia models. In 
a white matter lesion model in P5 rats, protection is seen 
when IL-10 is administered after the insult, whereas treat-
ment prior to or at the time of the insult is ineffective  [140] . 
Reduction of macrophage accumulation in the injured 
brain is considered to be one of the mechanisms of IL-10.

  Scarce data on the role of IL-4 in stroke suggests that 
this cytokine affects injury by modulating microglial ac-
tivation, presumably by attenuation of cytokine produc-
tion  [75, 143] , rather than by affecting neurons directly. 
Pretreatment of microglial cells with IL-4 has been shown 
to enhance adult neurogenesis  [75] . Treatment of P5 ro-
dents prior to induction of excitotoxic injury does not 
exacerbate injury, perhaps suggesting that IL-4 contrib-
utes to endogenous protection in a newborn brain  [138] .

  Chemokines 

 Chemoattractant cytokines, or chemokines, exert a 
variety of physiological functions, including control of 
cell migration, proliferation, differentiation and angio-
genesis  [144] . They act through G-protein-coupled recep-
tors  [144]  and are classified as C, CC, CXC, and CX3C 
based on the positions of key cysteine residues.

  The central role of monocyte chemoattractant protein-
1 (MCP-1) and its receptor, CCR2, in monocyte transmi-
gration into the adult brain is demonstrated by profound 
deficits in the recruitment of monocytes to sites of inflam-
mation and injury in CCR2-deleted mice  [145] , and in-
creased brain cytokine production and brain injury in 
CCR2-overexpressing mice  [146] . MCP-1 inhibition or de-
ficiency is associated with reduced injury  [147, 148] , where-
as overexpression of MCP-1 exacerbates injury  [149] .

  In neonatal rodents, MCP-1 expression is increased 
following HI  [150]  and transient focal ischemia  [84] . The 
pathophysiologic role of MCP-1 in neonatal brain injury 
is evident from protection by functional inactivation of 
MCP-1 after insult  [151]  or in mice with depleted IL-1-
converting enzyme  [150] . Despite increased MCP-1 ex-
pression in several brain cell types, accumulation of 
monocyte-derived macrophages is low following focal 
ischemia-reperfusion  [86]  and protection achieved by 
minocycline administration is not associated with de-
creased brain MCP-1 concentration  [84] .

  Macrophage inflammatory protein-1 �  is induced in 
animal models of focal cerebral ischemia in adults  [152]  
and in neonates  [82] . It is thought to contribute to ischemic 
injury by regulating monocyte and microglial recruitment 
and activation and disruption of the BBB  [153] .

  IL-8 and CINC-1/KC are ELR+ CXC chemokines that 
exhibit potent chemoattractant activities towards neutro-
phils and show angiogenic activities  [154] . IL-8  [155]  and 
CINC-1  [29]  injected into the brain are thought respon-
sible for the massive neutrophil-mediated BBB disrup-
tion. IL-1 �  mediates BBB permeability in part through 
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CINC-1 increase in the brain. Elevated postischemia 
CINC-1 contributes to injury; administration of a neu-
tralizing CINC-1 antibody protects the adult brain  [156] .

  The magnitude of CINC-1-induced neutrophil-medi-
ated brain inflammation and BBB breakdown depends on 
age  [29]  – a profoundly higher neutrophil extravasation 
and BBB disruption occurs in juvenile (P21) than in adult 
rats following CINC-1 injection into the brain  [29] . Data 
are accumulating on the role of CINC-1 in neonatal stroke. 
Minimal neutrophil accumulation in the neonatal brain 
following focal transient ischemia  [157]  is associated with 
the rapidly and profoundly elevated peripheral CINC-1 
levels  [86]  as well as with elevated levels of this chemokine 
in the brain. Attenuation of the peripheral levels of CINC-
1 enhances injury  [34] , suggesting a protective potential 
of this chemokine early after neonatal stroke. So far, there 
have been no reports on the effect of CINC-1 in angiogen-
esis and repair after neonatal brain injury.

  SDF-1 (CXCL12) may play an important role in hom-
ing stem cells to regions of ischemic injury  [158] . SDF-1 
is expressed in the ischemic penumbra, in reactive astro-
cytes in particular. Inhibiting SDF-1 reduces stem cell 
migration into ischemic tissue  [159] . SDF-1 expression is 
briefly upregulated by reactive astrocytes following neo-
natal HI injury, suggesting that the period of time for en-
dogenous SDF-1-mediated chemotaxis and recruitment 
of reparative cells may be narrow  [160] .

  ROS as Mediators and Triggers of Inflammation 

 Oxidative stress and inflammation are tightly linked. 
Once activated, the inflammatory cells generate ROS. 
ROS, in turn, can trigger an inflammatory response. Su-
peroxide anion plays an important role in ischemic in-
jury. It is generated via xanthine dehydrogenase (COX), 
xanthine oxidase and NADPH oxidase and is utilized via 
superoxide dismutase in the cytosol (CuZnSOD) and mi-
tochondria. CuZnSOD overexpression protects the adult 
brain from focal stroke  [161]  by increased superoxide uti-
lization. In the immature brain, CuZnSOD overexpres-
sion, however, exacerbates brain injury after HI  [162, 
163] . Low expression and activity of the H 2 O 2 -utilizing 
enzymes glutathione peroxidase and catalase are the un-
derlying causes of H 2 O 2  accumulation in injury in the 
developing brain  [164] . Enhanced activity of antioxidant 
metabolism via overexpression of glutathione peroxidase 
or deletion of CuZnSOD are protective  [165] , supporting 
the notion on the pro-injurious role of oxidative stress in 
neonatal ischemic brain injury.

  Activation of NADPH oxidase, a major superoxide-
producing enzyme in immune cells and microglia, con-
tributes to ischemic injury in adult rodents, as evident 
from protection by pharmacologic inhibition or genetic 
deletion of one of the subunits of this multicomponent 
enzyme, gp91-phox  [166, 167] . In contrast to the adult, ge-
netic deletion of gp91-phox increases the extent of brain 
injury in two neonatal models, the HI model in P9 mice 
and the ibotenate-induced excitotoxic model in P5 mice 
 [119] . More severe HI injury that parallels reduced NADPH 
oxidase activity is associated with increased levels of IL-1 �  
and accumulation of galectin-3-positive microglia. The 
underlying mechanisms for this phenomenon are not un-
derstood. Considering that NADPH oxidase is necessary 
for the phagocytotic process, one plausible explanation 
would be a more limited phagocytosis of apoptotic neu-
rons by microglial cells deficient in NADPH oxidase. Lim-
ited removal of apoptotic cells, in turn, leads to increased 
necrosis and more extensive injury. The cellular source of 
NADPH oxidase may also determine the role of this en-
zyme in ischemic damage  [166] .

  NO generation can have opposing roles in the process 
of ischemic injury, protective when generated by endo-
thelial NOS and detrimental when produced by neuronal 
NOS and iNOS  [168] . iNOS is capable of producing large 
amounts of NO over extended periods  [169] , which, in 
turn, directly damages cell constituents, produces a num-
ber of toxic species, such as peroxynitrate  [170] , activates 
COX-2  [171] , or inflammatory cells  [169] . Deletion of 
iNOS  [172]  or iNOS inhibition  [83, 173, 174]  is neuropro-
tective in adult stroke models and neonatal HI models. 
Following neonatal focal ischemia-reperfusion, iNOS in-
hibition attenuates caspase-3 activation without affecting 
activation or proliferation of microglial cells  [85] .

  Intracellular Inflammatory Signaling Pathways 

 Cerebral ischemia upregulates gene expression, in-
cluding rapid transcriptional activation of pro-inflam-
matory factors in both age groups  [175, 176] . We will dis-
cuss some of the transcription factors that contribute 
substantially to the inflammatory response.

  Nuclear Factor  � B 

 Nuclear factor  � B (NF- � B) is a transcription factor in-
volved in the regulation of inflammation and neuronal 
death after stroke  [177, 178] . NF- � B is normally located 
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in the cytoplasm as a heterodimer composed of p65 and 
p50 subunits, bound to the endogenous inhibitor protein 
I � B. Dissociation of this complex by phosphorylation of 
I � B by an upstream I � B kinase (IKK) liberates NF- � B, 
allowing it to translocate to the nucleus and bind to func-
tional  � B sites. NF- � B induces several major genes in-
volved in inflammation, such as TNF- � , ICAM-1, COX-
2, iNOS and IL-6. Pharmacological inhibition of early 
stages of the pathway activation  [179] , depletion of one of 
the subunits, p50  [180] , or inhibition of NF- � B-depen-
dent genes  [181]  typically reduces local inflammation and 
protects. NF- � B can affect neurons directly, as shown by 
protection of cultured neurons both by selective inhibi-
tion of IKK and targeted deletion of I � b � b, which en-
codes IKK2  [178] . In adult stroke, deletion of neuronal 
I � b � b markedly reduces infarct size whereas constitutive 
activation of IKK2 enlarges the infarct  [178] . However, 
the function of NF- � B in stroke is still controversial  [182] , 
as inhibition of NF- � B with diethyldithiocarbamate, for 
example, enhances neuronal DNA fragmentation and 
enlarges infarct  [183] .

  Recent studies in neonatal rodents have demonstrated 
that NF- � B plays a dual role in HI  [184, 185] . NF- � B un-
dergoes two waves of activation within 24 h after HI, with 
opposite effects on injury  [185] . NF- � B inhibition early 
after HI (0.5–6 h) prevents upregulation and accumula-
tion of the p53 in the nucleus, reduces mitochondrial cy-
tochrome c release and activation of caspase-3 and results 
in major neuroprotection 6 weeks after injury  [184] . In 
contrast, inhibition of both early and late (at 24 h) phases 
of activation abolishes the effect on neuronal apoptosis 
and even exacerbates injury  [185, 186] . Interestingly, late 
NF- � B activation does not increase cytokine mRNA lev-
els. While these data show that the kinetics of NF- � B is 
different in neonatal compared to adult rodents after 
ischemia-related events, the timing of NF- � B activation 
seems to play a key role in the ultimate outcome of HI; 
injury or protection. Cell origin of NF- � B activation after 
HI, which is currently not described, may appear critical. 
The severity of insult (duration of hypoxia) may also af-
fect the relative contribution of the anti-inflammatory 
compared to anti-apoptotic mechanisms of NF- � B inhi-
bition  [187] .

  Mitogen-Activated Protein Kinases 

 A family of mitogen-activated protein kinases 
(MAPKs) is comprised of three subfamilies, extracellular 
signal-regulated kinase, p38, and c-Jun N-terminal ki-

nase (JNK). The kinases are ubiquitously expressed and, 
depending on the context and cell type, exert a broad 
range of functions via activation of distinct transcription 
factors.

  Extracellular signal-regulated kinase 1/2 activation is 
generally neuroprotective in both adult and neonatal 
brain injury whereas MAPK p38 is best known for trans-
duction of stress-related signals, regulation of inflamma-
tory gene production  [188]  and NF- � B recruitment to se-
lected targets  [189] . Following forebrain ischemia in ro-
dents, phosphorylated p38 is detected in the hippocampus 
within neuron-like  [190]  and microglia-like  [191]  cells, 
suggesting a role in the endogenous inflammatory re-
sponse. Furthermore, MAPK p38 inhibitors reduce brain 
injury and neurological deficits in adult focal cerebral 
ischemia (reviewed in Mehta et al.  [192] ). While p38 in-
hibitors show some promise in adult stroke models, the 
role of this kinase is less clear in neonatal ischemic injury. 
While increased p38 phosphorylation is observed in neo-
natal rat brain after HI  [193] , a profound reduction of p38 
phosphorylation is seen in injured brain after neonatal 
transient focal ischemia  [84] . Additional information is 
needed to reconcile whether cell type-specific activation 
of p38 accounts for the observed age differences.

  JNK isoforms (JNK1/2/3) have distinct roles in cere-
bral ischemia. JNK1 is thought to play a major role in en-
suring high levels of basal JNK activity in the brain. In 
contrast, targeted deletion of JNK3 not only reduces the 
stress-induced JNK activity, but also protects mice from 
brain injury by reducing apoptosis  [194] . A protective ef-
fect of JNK3 deletion and reduction of caspase-3-depen-
dent apoptosis has recently been shown on HI in neonatal 
mice  [195] , similar to that observed against cerebral isch-
emia in the adult. MAPKs activate the mixed lineage ki-
nase family (MLK), which in turn regulate JNK. The 
MLK inhibitor CEP-1347 protects the immature brain 
from HI  [218] .

  Neuroprotection and Anti-Inflammatory Strategies 

 Data from pharmacological and knockout studies 
have consistently shown that at least some neuroprotec-
tive effect can be achieved after adult experimental 
stroke via reduction of local inflammation, with variable 
magnitude and length of protection, which, in part, de-
pends on the timing of intervention (reviewed in Iadec-
ola and Alexander  [1]  and Wang et al.  [38] ). The use of 
the same anti-inflammatory agents that induce protec-
tion after adult stroke, minocycline for example, pro-
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duced mixed results in neonatal rodents after focal stroke 
or HI  [84, 93, 94] . A broad range of anti-inflammatory 
drugs that target various intracellular pathways in mi-
croglial cells protect the immature brain against injury. 
While in many but not all cases, protection is associated 
with reduced macrophage densities or diminished accu-
mulation of CD68-positive cells in injured regions, in-
terestingly, in a growing number of cases protection oc-
curs through anti-apoptotic mechanisms, without di-
rectly affecting activa tion of inflammatory pathways 
(such as cytokines, NO); a phenomenon shown for mi-
nocycline  [84, 92, 97] , 2-iminobiotin  [96] , chloroquine 
 [95] , and aminoguanidine  [85] . Thus, the interplay be-
tween injury, neuronal cell death, and inflammation is 
not fully understood.

  A number of recent studies suggest that gender plays 
an important role in the pathogenesis of inflammatory 
injury. In neonatal rodents, the gender of the animal 
strongly influences activation of apoptotic pathways  [196, 
197]  and affects HI injury outcome. In fact, gender differ-
ences have been shown in neonatal rodents in response 
to treatment with iNOS inhibitor 2-iminobiotin, with 
protection in female but not male pups  [198] . Protection 
is associated with inhibition of apoptotic pathways rather 
than alteration in NO signaling  [198] .

  Therapeutic hypothermia, so far, is the most success-
ful and consistent intervention that works in all age 
groups in humans, but the mechanisms of protection 
are yet to be fully understood. There are certainly abun-
dant studies to support an anti-inflammatory effect of 
hypothermia, among other mechanisms (reviewed in 
Han and Yenari  [199] ). Some studies in neonatal rats 
have shown that combining hypothermia with a thera-
peutic, such as topiramate  [200] , can extend the ‘thera-
peutic window’.

  Inflammation, Neurogenesis and Repair 

 Ischemic stroke induced by transient MCAO gives rise 
to cell proliferation in the SVZ in both adult  [201, 202]  
and neonatal  [203, 204]  brains. The neuroblasts migrate 
from the SVZ into the damaged tissue, and differentiate, 
but only a few survive  [201, 205] . The microenvironment 
in their vicinity may play a key role in survival  [76, 206] . 
The reciprocal relationship between inflammation and 
neurogenesis was initially shown in adult stroke by dem-
onstrating the adverse effects of IL-6  [74]  and TNF- �  
 [207]  produced by activated microglia. Microglial cells 
produce an array of mediators that can be harmful dur-

ing acute disease but beneficial during repair (e.g. NO, 
MMPs, chemokines and complement). But these cells 
also produce supportive and anti-inflammatory factors, 
such as IGF-1, TGF- �  1 , GDNF and IL-10. A possibility of 
switching the microglial phenotype from destructive to 
beneficial with modulation of the environment after 
brain injury has been demonstrated  [5, 75, 133, 208] , with 
effects on gliogenesis and oligodendrogenesis  [209, 210] . 
IGF-1 produced by microglia in the SVZ can promote 
proliferation and differentiation of neural stem cells  [211] . 
Oxidative stress and inflammation are now shown to bias 
differentiation toward astrocytes, for example, by modu-
lating activity of the anti-inflammatory gene Sirt1  [212] .

  So far, only a few studies have linked neurogenesis and 
inflammation in the newborn brain. One recent study 
 [136]  demonstrates that the effects of HI on proliferation 
and differentiation are different in the immature (P9) 
and juvenile (P21) mouse hippocampus. Increased mi-
croglial proliferation and higher MCP-1 and IL-18 levels, 
which precede neurogenesis in the juvenile hippocam-
pus, are suggested to contribute to neurogenesis  [136] . 
IGF-1 and MCP-1, likely produced in microglia, may con-
tribute to sustained neurogenesis after HI  [213] .

  Conclusion 

 Stroke triggers a robust inflammatory response in 
both the adult and neonatal brain. A large body of data 
have linked postischemic inflammation to exacerbation 
of brain damage. Many contributing inflammatory 
mechanisms and pathways after cerebral ischemia are 
similar in adults and neonates. Yet, the immaturity of the 
immune system, an ongoing developmental neuronal 
apoptosis, and a different balance between pro- and an-
tioxidant enzymes create a ‘window of susceptibility’ to 
ischemic injury during early postnatal brain develop-
ment. Some examples include the opposing effects of ox-
idant pathway manipulation (CuZnSOD, NADPH oxi-
dase), differences in leukocyte-endothelial cell commu-
nication, and often distinct intracellular signaling within 
inflammatory pathways (NF- � B, MAPK p38). The mech-
anisms of beneficial effects for some anti-inflammatory 
drugs after neonatal HI and focal stroke – reduction of 
caspase-3 activation rather than a decrease in cytokine 
accumulation – await explanation.

  For a long time, the dominant concept was that in-
flammation necessarily leads to neurodegeneration. 
However, recent data show that inflammation, via mi-
croglia in particular, may support rather than harm neu-
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rogenesis and long-term recovery. The role of inflamma-
tion in ischemia-related brain injury – destructive or pro-
tective – may depend on the severity of ischemia, duration 
of activation, and stage of stroke progression. A recent 
study that demonstrated the opposing effects of prenatal 
inflammation – a profound exacerbation of HI severity 
in neonatal mice but protection in adult mice  [214]  – sug-
gests that inflammation can reprogram brain sensitivity 
to ischemia, perhaps over a life span. Therefore, it is im-
perative to understand when, how and for how long it is 
safe to use anti-inflammatory agents in injured neonates, 
without inducing adverse effects over a longer term. Fu-

ture work should address how the immune system moves 
from damaging to protective/restorative responses and 
how these stages are affected by factors like gender and 
genetic background.
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