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with the standard single-level regression modeling ap-
proach. The combined analyses of the Southern California 
Children’s Health Study and challenge study data suggest 
that these joint analytical methods detected more signifi-
cant genetic main and gene-environment interaction ef-
fects than the conventional analysis.  Conclusion:  The pro-
posed prior framework is very flexible and can be general-
ized for an integrative analysis of diverse sources of relevant 
biological data.  Copyright © 2013 S. Karger AG, Basel 

 Introduction 

 Identifying causal susceptibility alleles for complex 
diseases poses many challenges. These include the multi-
genic nature of the disease, difficulties in assessing indi-
vidual exposures, and complex interactions with envi-
ronmental factors. Current analytical approaches have 
limitations, and analytical challenges are formidable for 
aggregating the findings from a wide variety of data 
types. Although prior knowledge about gene functions, 
protein interactions, and disease pathways have been 
used in various hierarchical modeling approaches for a 
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 Abstract 

  Background:  A chronic disease such as asthma is the result 
of a complex sequence of biological interactions involving 
multiple genes and pathways in response to a multitude
of environmental exposures. However, methods to model 
jointly all factors are still evolving. Some of the current chal-
lenges include how to integrate knowledge from different 
data types and different disciplines, as well as how to utilize 
relevant external information such as gene annotation to 
identify novel disease genes and gene-environment inter-
actions.  Methods:  Using a Bayesian hierarchical modeling 
framework, we developed two alternative methods for joint 
analysis of an epidemiologic study of a disease endpoint and 
an experimental study of intermediate phenotypes, while 
incorporating external information.  Results:  Our simulation 
studies demonstrated superior performance of the pro-
posed hierarchical models compared to separate analysis 
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single study  [1–11] , they have not been previously incor-
porated into joint modeling of related studies with differ-
ent designs. Hence, an integrated statistical framework 
would enhance our ability to identify causal susceptibil-
ity alleles for complex diseases.

  Our proposed models are motivated by, and later il-
lustrated with, an example of two related studies: an ob-
servational epidemiologic study and an experimental 
challenge study. The first is the Southern California Chil-
dren’s Health Study (CHS), an observational epidemio-
logic cohort study designed to assess the risk of respira-
tory disorders such as asthma attributable to the genetic 
effects  G , long-term exposure to air pollution  E , and 
gene-environment  G  !  E  interactions in over 11,000 
school children from Southern California  [12, 13] . In this 
study, the environmental exposure to major oxidants and 
pro-oxidants in ambient air such as particulates (PM 10  or 
PM 2.5 ) were routinely monitored at the selected commu-
nities. Several papers have reported on the associations of 
children’s asthma with genetic variants, ambient air pol-
lution, and other exposures  [13–23] . The other is a single-
blind, randomized, placebo-controlled crossover study 
conducted in a group of 70 allergen-sensitive subjects 
from polluted areas in Southern California. The goal of 
this experimental biomarker study was to simultaneous-
ly characterize the effects of  G , diesel exhaust particles 
(DEPs)  T  and their interactions on multiple phenotypic 
measurements of intermediate biological processes in-
volved in asthma occurrence. Specifically, all partici-
pants underwent four intranasal challenges at least 6 
weeks apart with cat allergen plus placebo, DEPs plus pla-
cebo, cat allergen plus DEPs, or pure placebo, in random 
order. The phenotypic responses measured after each 
challenge included the levels of 13 cytokine and chemo-
kine markers (i.e. IFN � , TNF � , IL-1b, IL-4, IL-5, IL-8, 
MCP-1, MCP-3, MIP-1a, IP-10, RANTES, EOTAXIN, 
and GM-CSF), allergen-specific IgE and IgG-4 levels, his-
tamine concentration, allergic symptom score (e.g. oc-
currences of sneezing, runny nose, and nasal itching), 
and counts of four cell types (i.e. eosinophils, macro-
phages, lymphocytes, and neutrophils). DEPs are a stan-
dardized experimental exposure comprising varying siz-
es of particulate matter  [24]  and can serve as surrogates 
for air pollution to assess phenotypic responses  [25] . The 
details regarding demographics of study participants, 
challenge procedures, and the protocols for phenotypic 
measurements will be described elsewhere [Volk, pers. 
commun.].

  In this example, the treatment (  T  ) being examined in 
the biomarker challenge study is viewed as a surrogate for 

the exposure ( E ) being studied in the epidemiologic CHS 
study. The treatment-induced responses measured in the 
biomarker challenge study may reflect intermediate steps 
in a biological pathway leading to disease occurrence be-
ing observed in the epidemiologic CHS study. Hence, the 
CHS and the challenge study together offer an opportu-
nity to investigate the interactions between genetic varia-
tion and exposure to particulates on the risk of allergic 
airway disease through joint modeling of effects attribut-
able to differential responses of immune phenotypes. We 
hypothesized that an integrative analysis of the epidemi-
ologic and biomarker studies could improve power for 
discovering the disease susceptibility loci and/or for iden-
tifying genes that influence the disease risk through in-
teractions with environmental determinants. The design 
of a biomarker study could involve an independent set of 
disease-susceptible subjects or a subset of subjects sam-
pled from a large-scale longitudinal study of multiple 
endpoints. However, our approach is applicable to any 
such combination of biologically related studies under 
the assumption that these studies are estimating similar 
patterns of effects. For example, CHS investigators are 
currently conducting toxicological assays of the biologi-
cal effectiveness of particulate pollution samples collect-
ed at the homes of a subset of individuals from this same 
epidemiological study for use in joint analysis; other ex-
amples might include the use of expression quantitative 
trait locus (eQTL) or metabolomics measurements on the 
same genes or metabolites being studied in an epidemio-
logic study.

  Using a Bayesian hierarchical modeling framework, 
biological annotation of gene functions, disease mecha-
nisms, and pathways can be incorporated into a flexible 
regression model for the prior distribution and then com-
bined with the genetic association data to form a poste-
rior distribution. The dependency among selected vari-
ables can be structured in a hierarchical manner to reflect 
the strength of the disease associations in the statistical 
analyses  [7, 26, 27] . For example, a second level of a hier-
archical model can inform the regression coefficients 
from the first-level model by borrowing strength from 
other estimates to which they are similar with respect to 
the characteristics pre-specified in a prior covariate ma-
trix. The implementation of Markov Chain Monte Carlo 
(MCMC) methods in the BUGS software has enabled es-
timation of posterior distributions from complex Bayes-
ian models. Hence, Bayesian methods provide a coherent 
analytical framework for computing measures of effect 
by combining the evidence across studies.
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  Methods 

 Analysis Models 
 We propose two alternative approaches for linking the analy-

ses of related studies within a Bayesian hierarchical modeling 
framework. The first approach incorporates the measurements of 
the experimental biomarker study directly into the main analysis 
of  G  and  G   !   E  interactions for the epidemiologic study through 
a second-level univariate linear model (HM1 approach), whereas 
the second approach analyzes the epidemiologic and the biomark-
er studies jointly, using a multivariate model for the second level 
(HM2 approach). Both methods can incorporate external infor-
mation through prior covariates in the second-level model.

  Let  G  im  denote the genotype of SNP marker  m  for subject  i  
from the epidemiologic study and  G  jm  the corresponding geno-
type for subject  j  from the biomarker study. In the first level of the 
hierarchical model, a logistic regression model and a linear re-
gression model are applied to fit the epidemiologic data and bio-
marker data for  M  SNPs separately as follows:

  For the epidemiologic study,
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    where  Y  denotes a disease status,  G  is a coded genotype,  E  is a bi-
nary exposure indicator,  � 1,  � 2 and  � 3 are the corresponding 
regression coefficients for main effects of genetic and environ-
mental factors, and their interaction effect, respectively.

  For the biomarker study,
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    where  Y  denotes  P -dimensional normal phenotypic responses,  G  
is a coded genotype,  T  is a treatment indicator,  � 1,  � 2, and  � 3 are 
the corresponding regression coefficients (the differences in 
mean measurements) for the main effects of the genetic factors 
and the treatment, and their interaction, respectively. The within-
subject correlation (before and after the treatment) is modeled as 
a random effect: 

( )20 .
iid

j RR ~ N ,�

    The combined analysis of the two datasets can be performed 
by linking the first-level regression coefficients for the main  G  ef-
fects ( �  1  m   �   �  1  pm ) and  G  !  E  interactive effects ( �  3  m   �   �  3  pm ) 
through a second level of the hierarchical model in two alternative 
ways ( fig. 1 ).

  In one form, the findings of the biomarker data serve as covari-
ates informing the corresponding estimates of the epidemiologic 
data using a univariate linear model (second-level model I). Spe-
cifically, for each SNP maker  m , we treat the  P  regression coeffi-
cients for the main  G  effects or  G  !  E  interactive effects ( �  1  pm  or 
 �  3  pm ) from the first-level model of the biomarker data as predic-
tors in a regression model for the corresponding parameter esti-
mates of the epidemiologic data ( �  1  m  or  �  3  m ). In its simplest form, 
we do not include any external information:

  Model HM1a: 
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    To incorporate external information, we regress both sets of 
coefficients  �  m  and  �  mp  on a vector of prior covariates  Z  m  for each 
gene  m , as well as on each other:

  Model HM1b: 
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  where  �  and  	  denote vectors of second-level prior coefficients for 
 Z ;  �  2  and  
  2  are the variances of the residuals from the fitted sec-
ond-level linear models.

  Alternatively, treating the shared biological relationships’ un-
derlying disease etiology among the epidemiologic and biomark-
er studies symmetrically, a multivariate linear model can be ap-
plied to simultaneously fit the first-level regression coefficients 
from both datasets (second-level model II). As with the HM1 ap-
proach, we describe two variants, HM2a with only a vector of in-
tercepts and HM2b incorporating prior covariates. But rather 
than regressing the  � s on the  � s, their relationships are described 
by a covariance matrix  S :

  Model HM2a:
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  where [ �  mp ] denotes a  m -by- p  matrix of the first-level regression 
coefficients,  � s.

  Model HM2b:
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  where  S  denotes the prior similarity matrix representing the con-
nection among the first-level regression coefficients of the form:
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  Since fitting the HM2 model requires a high dimensional in-
tegral that is not easy to compute, we used MCMC techniques as 
implemented in WinBUGS for fitting all four hierarchical mod-
els. In the Bayesian paradigm, model parameters are treated as 
random variables that are characterized by prior distributions. 
For both HM1 and HM2 approaches, we specified vague prior 
information (i.e. normal distributions with mean 0 and variance 
10) for the second-level coefficients and inverse  �  distributions for 
the precision of the residuals of the hierarchical models. Given all 
prior distributions and fully-specified conditional probabilistic 
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model (i.e. the distribution of the parameter of interest given all 
other quantities in the model), the MCMC method uses an itera-
tive procedure, sampling from each of the full conditional distri-
butions in turn. After the algorithm has reached equilibrium, 
subsequent parameter values are generated from the joint poste-
rior distribution.

  Simulation Studies 
 We simulated paired datasets for a typical epidemiologic 

study and an experimental biomarker study. For a specific pa-
rameter choice (described in  table 1 ), we fixed the baseline dis-
ease risk and exposure prevalence in the simulation of the epi-
demiologic data. Genetic and environmental factors were as-
sumed to be independent. Disease status was assigned using 
equation (1) and subjects were simulated until the target num-
bers of cases and controls were generated. In the simulation of 
the  P  = 10 phenotypic biomarkers, we assumed 5 were relevant 
to the disease outcome and 5 not. We further assumed that the 
 P  phenotypic measurements were multivariate normally distrib-
uted,  Y  jtp   �   MVN (  �   tp ,  R ) with means given by equation (2). The 
correlation matrix  R  used randomly-generated  � s from a uni-
form distribution between 0.3 and 0.8 among the 5 disease-re-
lated phenotypes and between 0 and 0.1 for the 5 disease-irrele-
vant phenotypes, subject to the constraint that the entire  R  ma-
trix be positive definite. The parameter settings for the disease 
model were identical for the paired datasets. We adopted a dom-

inant coding of the genes and assumed Hardy-Weinberg and 
linkage equilibrium.

  The parameter values for the second level of the hierarchical 
models were chosen to yield identical settings for the first-level 
regression coefficients from the epidemiologic data ( �  1  m ,  �  2 , and 
 �  3  m ) as well as for the biomarker data ( �  1  mp ,  �  2  p , and  �  3  mp ). The 
dependences between the first-level model coefficients corre-
sponding  G  and  G  !  E  terms ( �  1  vs.  �  1  and  �  3  vs.  �  3 ) were speci-
fied differently according to the respective second-level model 
properties (see online suppl. material for details; for all online 
suppl. material, see www.karger.com/doi/10.1159/000345181). 
The construction of the second-stage prior covariate matrix  Z  is 
illustrated in online supplementary table  3. The true covariate 
matrix  Z  was used in the simulation of paired datasets for HM1b 
and HM2b approaches. For analysis, we used various misspeci-
fied  Z  matrices, defined by a true positive rate (TPR, the probabil-
ity of correct designation of risk alleles) and a true negative rate 
(TNR, the probability of correct designation of null alleles). We 
varied the TPR and TNR to simulate four scenarios: highly infor-
mative (95%), prior moderately informative (75%), prior slightly 
informative (60%), and uninformative (50%). For example, given 
a true covariate matrix  Z , 25% of risk alleles were misspecified as 
null alleles under the scenario of ‘prior moderately informative’. 
The HM1b and HM2b models were fitted using the four misspec-
ified prior covariate matrices.

Gim

Gim X Ei

Ei

Yi

Epidemiologic study

Experimental biomarker study

i: Index of subject
m: Index of SNP marker

Yi: Disease status for subject i
Gim: Genotype of SNP marker for subject i
Ei: Environmental exposure for subject i

j: Index of challenge subject
m: Index of SNP marker

Yj0p: Phenotypic measures at placebo
Yjtp: Phenotypic measures at
 surrogate treatment
Gjm: Genotype of SNP m for subject i

2nd level
model I

2nd level
model II

�0

�1p

�0p �1pm �3pm�2p

�3p

�2�1m �3m

Gjm

Yj0p

Yjtp

MVN(Zm�1p, S) MVN(Zm�3p, S)

  Fig. 1.  Conceptual framework linking the 
experimental biomarker study to the epi-
demiologic study using hierarchical mod-
eling approaches. 
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  Datasets were replicated 100 times for each of the proposed 
hierarchical modeling approaches. For each of the 100 replica-
tions, the paired datasets were jointly analyzed with the four hi-
erarchical modeling approaches using the WinBUGS software 
(http://www.mrc-bsu.cam.ac.uk/bugs/). In order to compare the 
testing performance to ordinary regression methods, we com-
puted the posterior probability of the model parameters being 
greater than zero. For each of the 15 combinations of datasets and 
models, the power and type I errors were examined for  G  and  G 
 !  E  interaction under various scenarios. For computing the type 
I error, both the epidemiologic and biomarker datasets were sim-
ulated assuming no disease association [e.g. odds ratios (ORs) = 
1.0 for  G  and  G  !  E  terms in epidemiologic study]. Here, the type 
I error was defined as the proportion of null markers for which 
the posterior credibility intervals excluded zero. For assessing 
statistical power, 10 out of 20 typed SNP markers were chosen as 
disease-associated markers with expected values of ORs for the 
main  G  effects and  G  !  E  interactions set to 1.5 and 2.0, respec-
tively, in the simulated epidemiologic data. Power was defined as 
the proportion of the true  G  or  G  !  E  estimates whose posterior 
credibility intervals excluded zero. The joint posterior distribu-
tions for hierarchical model parameters generated by the MCMC 
algorithm were also summarized using posterior means, poste-
rior medians, posterior variances, and 95% credible intervals. 
The results were compared with those obtained from the conven-
tional logistic or linear regression methods (first-level model 
only).

  Two independent chains were run for assessing convergence, 
where each chain was randomly initialized. The trace plots of 
posterior estimates generated at each iteration for the first-level 
and second-level model parameters indicated adequate mixing 
and convergence from fitting each of the four hierarchical mod-
els. In the simulation, the number of iterations was set to 2,000 
with 1,000 burn-in. Across the 100 replications, the posterior es-
timates were similar to their simulated parameter values (data 
not shown).

  Application to the CHS and the Biomarker Challenge Study 
 For genetic association datasets from the CHS and the bio-

marker challenge study, we focused on a set of functional poly-
morphisms in candidate genes for which strong links of the main 
genetic effects and/or the joint effects with environmental modi-
fiers on asthma risk have been reported in previous CHS publica-
tions  [28–39] . Genes inducible by oxidative stress [glutathione S-
transferase  (GST)  superfamily]  [28, 31]  or involved in neutrophil-
ic inflammation [catalase  (CAT) , myeloperoxidase  (MPO) , 
epoxide hydrolase  (EPHX1) , adrenergic receptor gene  (ADRB2) , 
intercellular adhesion molecule-1  (ICAM-1) , transforming 
growth factor  (TGFB1) , or tumor necrosis factor  (TNFA) ]  [29, 30, 
32, 34–38]  have previously been shown to adversely influence 
lung function growth or were associated with an increased risk of 
asthma occurrence.

  For the application of the proposed hierarchical modeling ap-
proaches, the analyses were restricted to a subset of 2,937 children 
with complete genotypes from the CHS cohorts A–D and 65 chal-
lenge study subjects for whom the genotyping had been conducted. 
For each marker locus, genotype and allele frequencies were strat-
ified by ethnicity. Hardy-Weinberg equilibrium of allele distribu-
tions was tested overall and then separately by disease status. The 
dominant genetic model was used to assess the association of the 
variant allele with asthma outcome, with the exception of  TGFB1 , 
for which previous literature has suggested a recessive model.

  For the first-level of the hierarchical model for the CHS, phy-
sician-diagnosed asthma at study entry was fitted with all genet-
ic markers, community level particulate matter (PM 2.5 ), and all 
two-way  G  !  E  interactions (the product term of these two vari-
ables) along with other covariates using the logistic regression 
given by equation (1). Exposure was classified as high or low level 
of ambient PM 2.5  based on the median of the central site annual 
average levels for each community, as in previously reported anal-
yses  [38] . The following covariates were included in the model: 
age, gender, self-reported ethnicity, family income, health insur-
ance status, parental education, family history of asthma, atopy, 

Table 1.  Parameter settings in data simulation

Parameters Epidemiologic data Biomarker data

Total of subjects 500 each cases and controls 60
Baseline disease risk 0.005 –
Overall mean of phenotypes – 0.05–0.15
Exposure prevalence 20% –
Total of phenotypic markers – 10
Main genetic effect OR = 1.5 or 2.0 DIFF = 1 (variance = 0.040)
Main exposure/treatment effect OR = 1.5 DIFF = 1
G ! E interactions OR = 1.5 DIFF = 1 (variance = 0.036)

Total of SNP markers 20
MAF (risk allele; n = 10) 20%
MAF (null allele; n = 10) 5–30%

 The variance of phenotypic effects was computed as expected parameter estimates from fitting the simu-
lated datasets using WinBUGS. DIFF = Difference relative to the overall mean; MAF = minor allele frequency; 
– = not applicable.
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in utero exposure to maternal smoking, and exposure to second-
hand smoke. All variables were categorized as described else-
where  [35, 38] .

  For the challenge study, 14 phenotypic outcomes (i.e. IL-4, IL-
5, GM-CSF, eotaxin, RANTES, MIP1a, MCP-1, IP-10, lympho-
cytes, IFN- � , histamine, IgE, IL-8, eosinophils) were included in 
the analysis in order to avoid colinearity and overfitting. Mea-
surements below the limit of detection were assigned to the lower 
limit of detection for the respective assay in the analyses. A rank-
based transformation was performed on all phenotypes and these 
rank scores were then converted to standard normal deviates. The 
first-level model used a mixed-effect linear regression of individ-
ual quantitative phenotype on genotypes for each challenge sub-
ject, DEP treatment, and all the possible interactions of the two 
variables in the form of equation (2).

  The second level of the hierarchical models used either the uni-
variate (HM1) or multivariate (HM2) linear form to link the pa-
rameter estimates corresponding to  G  and  G  !  E  terms from the 
above first-level models. For the HM1b and HM2b models, bio-
logical information about the SNP markers was obtained from the 
Ingenuity Pathway Analysis tool (IPA, Ingenuity Systems, Inc.). 
Online supplementary table 4 shows the  Z  matrix with 16 rows cor-
responding to first-level genetic factors  (ADRB2 ,  CAT ,  CC16 , 
 EPHX1 ,  GPX1 ,  GSTM1 ,  GSTM3 ,  GSTP1 ,  HO1 ,  ICAM-1 ,  MMP9 , 
 NOS3 ,  NQO1 ,  PPARR ,  TGFB ,  TNFA)  and 15 columns correspond-
ing to asthma outcome being studied in the CHS (1st column) plus 
the annotated phenotypes being measured in the challenge study 
(columns 2–15). A binary indicator was coded 1 if the biological 
connectivity between genotypes (in a row) to phenotypes (in a col-
umn) was present and 0 otherwise. The biological connectivity can 
be protein-protein interactions (PPIs) or transcriptional regula-
tions that are retrieved based on literature-annotated functional 
relationships and algorithmically built in the IPA.

  All statistical analyses were conducted using R version 2.10 
(http://www.r-project.org/) and the WinBUGS program (http://
www.mrc-bsu.cam.ac.uk/bugs/), which implements an MCMC 
sampler. Priors, numbers of iterations, and convergence diagnos-
tics were implemented as described previously for the simula-
tions.

  Results 

  Simulation Results 
  The type I error rates computed for  G  and  G  !  E  terms 

were 5.5 and 5.4%, respectively, for the standard logistic 
regression. The corresponding values were 3.6 and 4.3% 
for the HM1a procedure. For various scenarios, the type 
I error rates ranged from 0.033 to 0.037 for the  G  term and 
from 0.033 to 0.039 for the  G  !  E  term by using the HM1b 
procedure. For the HM2b approach, they were smaller 
than 1.7 and 5.2% using identical datasets simulated with 
null  G  and  G  !  E  effects, respectively.

   Table 2  summarizes the calculated power for  G  and 
 G  !  E  effects on disease risk under a two-sided alterna-
tive using the standard logistic regression and each of 
the four hierarchical models. For assessing the statisti-
cal power using the HM1a testing procedure, two sce-
narios were simulated by varying the strength of  G  !  E  
interaction while fixing the OR for the main effect of  G  
to 1.5. For 20% prevalence of the exposure and relative-

Table 2.  Calculated power for standard logistic regression and hierarchical modeling (HM) approaches

HM 
model

Parameter values set in simulations Standard approach  HM approach

main G effect G ! E interaction main G eff ect G ! E interaction

HM1a ORG-E = 1.5; ORG = 1.5 0.797 0.472 0.900 0.522
ORG-E = 2.0; ORG = 1.5 0.789 0.587 0.903 0.684

HM1b Prior highly informative; ORG-E = 2.0, ORG = 1.5

0.775 0.603

0.926 0.771
Prior moderately informative; ORG-E = 2.0, ORG = 1.5 0.889 0.730
Prior slightly informative; ORG-E = 2.0, ORG = 1.5 0.871 0.687
Prior not informative; ORG-E = 2.0, ORG = 1.5 0.861 0.682

HM2a Intercept only; ORG-E = 2.0, ORG = 1.5 0.701 0.399

HM2b Prior highly informative; ORG-E = 2.0, ORG = 1.5

0.683 0.559

0.949 0.946
Prior moderately informative; ORG-E = 2.0, ORG = 1.5 0.844 0.811
Prior slightly informative; ORG-E = 2.0, ORG = 1.5 0.771 0.673
Prior not informative; ORG-E = 2.0, ORG = 1.5 0.780 0.605

 For G and G ! E terms under a two-sided alternative, respectively, using the standard logistic regression (first-level model only) 
and four hierarchical modeling approaches, power was calculated as average over the proportions of the disease susceptibility loci (of 
20 markers, n = 10 pre-specified risk alleles) detected significant in 100 replicates.
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ly common variants (frequency = 20%), HM1a was more 
powerful than the standard approach for detecting the 
main genetic effect at an OR of 1.5; the standard ap-
proach had 80% power, while HM1a had 90% power re-
gardless of the size of the  G  !  E  effects. In the presence 
of a true relationship between the simulated epidemio-
logic and biomarker datasets, the HM1a procedure in-
creased power for  G  !  E  interactions from 47.2 to 52.2% 
and from 58.7 to 68.4% for interaction RRs of 1.5 and 
2.0, respectively. 

  The performance of the HM1b and HM2b approaches 
was evaluated across a range of TPR and TNR in the pri-
or  Z  matrix. Overall, the performance was better by any 
of these two procedures than the standard approach. The 
power for detecting the main effect of  G  increased from 
77.5% with the standard approach to 87.1, 88.9, and 92.6% 

with the HM1b approach for slightly, moderately, and 
highly informative prior covariates. The corresponding 
values of power for detecting  G  !  E  interactions in-
creased from 60.3% for the standard approach to 68.7, 
73.0, and 77.1% for increasingly informative priors. When 
compared to the standard logistic regression approach 
(68.3% for main  G  effects and 55.9% for  G  !  E  interac-
tions), the power for the HM2b model ranged from 77.1 
to 94.9% for detecting main  G  signals and from 67.3 to 
94.6% for detecting  G  !  E  interactions. For the non-in-
formative prior, the calculated power was in general the 
smallest for both  G  and  G  !  E  effects. In contrast, for the 
HM2a approach, the model performance was compara-
ble to the standard logistic regression procedure for de-
tecting main  G  effects but gained no power for detecting 
 G  !  E  interactions.
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  Fig. 2.  ROC analysis for overall perfor-
mance comparison between the standard 
logistic regression method and proposed 
hierarchical modeling approaches ( a  
HM1a,  b  HM1b,  c  HM2) for the identifica-
tion of main  G  effects. 
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  To examine the overall performance of the four hier-
archical modeling approaches compared to the standard 
logistic regression method, receiver operating charac-
teristic (ROC) curves were plotted separately for detect-
ing  G  effects in  figure 2  and  G  !  E  interactions in  figure 
3 . Here, a test statistic was computed as a ratio of the 
average to the standard deviation of first-level model pa-
rameters  �  1  and  �  3  for individual SNPs, taken across all 
100 replicates. For the hierarchical models, the ratio of 
posterior means and posterior standard deviations from 
the WinBUGS output were used to compute the test sta-
tistic. Second, the values were ranked in a descending 
order to construct discrimination thresholds. The true 
positive rate (power) was computed as the fraction of 
pre-specified risk alleles found significantly above each 

threshold of the test statistic, while the false positive rate 
(type I error rate) was calculated as the fraction of des-
ignated null alleles with the test statistic above the same 
threshold. Hence, the ROC graphs visually depict the 
performance of the statistical models being compared. 
For example, the bigger the area under the curve, the 
better the model performs. Under a more stringent 
threshold (upper left part of the curve with higher pow-
er and lower type I error rate), any of the joint hierarchi-
cal models with the exception of HM2a showed an im-
proved performance over the traditional logistic regres-
sion method across all simulated scenarios. Using 
identical parameter settings for the first-level models, 
models with informative priors outperformed the less 
informative models.
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  Fig. 3.  ROC analysis for overall perfor-
mance comparison between the standard 
logistic regression method and proposed 
hierarchical modeling approaches ( a  
HM1a,  b  HM1b,  c  HM2) for the identifica-
tion of  G   !   E  interactions. 
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  Next to assess the between-model performance with 
respect to the second-level model specification, each of 
the 3 separate datasets (simulated under scenarios for 
HM1a, HM1b, and HM2b) was fitted individually with 
the standard logistic regression method (one-level mod-
el only) and the 4 proposed hierarchical models (HM1a, 
HM1b, HM2a, and HM2b).  Figure 4  shows the calcu-
lated power averaged over 100 replications for detecting 
 G  ( fig. 4 a) and  G  !  E  effects ( fig. 4 b) for various combi-
nations of three simulation models and five testing pro-
cedures. Compared to the standard one-level logistic re-
gression approach, the trend in power was very similar 
for each hierarchical model regardless of the simulation 
model used. For all three simulation models, the power 
for detecting the main effects of  G  increased from 74.9% 
with the standard approach to 86.7, 89.0, and 96.7% on 
average for HM1a, HM1b, and HM2b with highly infor-
mative prior, respectively. The corresponding values for 
detecting  G  !  E  interactions were from 58.3 to 67.9, 
76.9, and 95.0%. In addition, power was consistently bet-
ter for the multivariate than for the univariate model, 

and better when adding external information to either 
model.

  Application Results 
  Table 3 a, b present the posterior estimates of ORs and 

corresponding 95% credible intervals that were comput-
ed for the association of each genetic marker with asthma 
from the hierarchical modeling approaches for the main 
genetic effect and  G  !  E  interactions, respectively. For 
comparison, the respective maximum likelihood esti-
mates of ORs and 95% confidence intervals obtained 
from the multivariate logistic regression model are also 
shown. The HM1a and HM2a approaches were applied to 
assess the potential of hierarchical modeling with no ex-
ternal information. As seen in previous publications, 
there was no evidence from model HM2a for any disease 
association. The prevalence of asthma was not signifi-
cantly different between communities with low to high 
levels of PM 2.5  for any of the models.

  For the main effect of each genetic variant,  CAT ,  CC16 , 
 NQO1 , and  TNFA  were statistically significantly associ-
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  Fig. 4.  Calculated power using standard 
logistic regression versus hierarchical 
modeling approaches for the identification 
of main        G  effects ( a ) and    G   !   E  interac-
tions ( b ). Each bar represents the estimat-
ed power for various combinations of sim-
ulation parameters and testing proce-
dures. 
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ated with asthma in the conventional logistic regression; 
these findings were also supported by HM1a, HM1b, and 
HM2b. Interactions between environmental exposure to 
PM 2.5  and the three genes of  CAT ,  MMP9 , and  NQO1  
were statistically significant by both the conventional 
analysis and the hierarchical models. The main effects 
and modifying effects for  HO1  and  ICAM-1  were statisti-

cally significant in hierarchical model HM2b, but their 
association with disease was not supported by the con-
ventional logistic regression approach. The homozygous 
 TT  genotype in the promoter region of  TGFB1  has been 
previously reported to be associated with an increased 
risk in asthma  [34] , but this adverse effect was only found 
in the hierarchical modeling (HM2b). On the other hand, 

Table 3.  Results from application of logistic regression and hierarchical modeling approaches to the CHS and biomarker challenge 
study

a Main G effects

SNP Logistic regression HM1a HM1b HM2a HM2b
(gene) OR (95% CI)a OR (95% CI)b OR (95% CI)b OR (95% CI)b OR (95% CI)b

ADRB2 1.00 (0.73, 1.38) 1.00 (0.73, 1.33) 1.04 (0.80, 1.33) 1.06 (0.92, 1.22) 1.06 (0.92, 1.22)
CAT 0.58 (0.41, 0.82) 0.63 (0.45, 0.84) 0.64 (0.46, 0.85) 0.93 (0.79, 1.06) 0.76 (0.63, 0.89)
CC16 1.66 (1.21, 2.27) 1.55 (1.16, 2.05) 1.59 (1.18, 2.11) 1.12 (0.97, 1.29) 1.41 (1.17, 1.69)
EPHX1 1.31 (0.95, 1.81) 1.30 (0.95, 1.71) 1.25 (0.93, 1.64) 1.02 (0.89, 1.16) 1.03 (0.89, 1.18)
GPX1 1.15 (0.85, 1.57) 1.18 (0.87, 1.57) 1.15 (0.87, 1.50) 1.01 (0.89, 1.15) 1.02 (0.89, 1.18)
GSTM1 0.90 (0.66, 1.24) 0.93 (0.69, 1.24) 0.91 (0.68, 1.19) 1.00 (0.87, 1.15) 0.86 (0.73, 1.01)
GSTM3 1.15 (0.82, 1.61) 1.16 (0.82, 1.57) 1.07 (0.80, 1.43) 0.96 (0.83, 1.09) 0.95 (0.83, 1.09)
GSTP1 1.28 (0.93, 1.76) 1.27 (0.94, 1.70) 1.23 (0.93, 1.62) 1.05 (0.92, 1.20) 1.04 (0.91, 1.19)
HO1 0.75 (0.54, 1.04) 0.81 (0.58, 1.08) 0.74 (0.55, 0.98) 0.99 (0.86, 1.15) 0.82 (0.70, 0.97)
ICAM-1 1.01 (0.70, 1.46) 1.01 (0.70, 1.39) 1.07 (0.74, 1.46) 1.01 (0.87, 1.17) 1.24 (1.03, 1.47)
MMP9 0.81 (0.60, 1.11) 0.86 (0.63, 1.14) 0.88 (0.66, 1.16) 0.99 (0.86, 1.11) 1.12 (0.94, 1.31)
NOS3 1.00 (0.73, 1.37) 0.99 (0.72, 1.32) 1.02 (0.76, 1.35) 1.04 (0.91, 1.19) 1.04 (0.91, 1.19)
NQO1 0.60 (0.43, 0.84) 0.66 (0.48, 0.90) 0.67 (0.49, 0.89) 0.94 (0.82, 1.08) 0.77 (0.65, 0.90)
PPARR 1.36 (0.94, 1.98) 1.36 (0.93, 1.91) 1.27 (0.90, 1.74) 1.06 (0.92, 1.24) 1.05 (0.89, 1.24)
TGFB1 1.05 (0.77, 1.44) 1.07 (0.80, 1.38) 1.10 (0.81, 1.45) 0.99 (0.86, 1.13) 1.22 (1.02, 1.44)
TNFA 1.47 (1.05, 2.07) 1.40 (1.00, 1.88) 1.48 (1.07, 1.98) 1.03 (0.88, 1.18) 1.28 (1.08, 1.53)

b G ! E interactions

ADRB2 1.15 (0.73, 1.81) 1.22 (0.79, 1.79) 1.11 (0.76, 1.59) 1.04 (0.85, 1.27) 1.03 (0.84, 1.28)
CAT 1.92 (1.18, 3.11) 1.76 (1.12, 2.64) 1.72 (1.10, 2.61) 1.06 (0.88, 1.29) 1.37 (1.08, 1.77)
CC16 0.65 (0.42, 1.02) 0.75 (0.48, 1.09) 0.72 (0.47, 1.05) 1.00 (0.82, 1.22) 0.78 (0.61, 0.98)
EPHX1 0.96 (0.61, 1.51) 0.97 (0.63, 1.45) 1.03 (0.69, 1.48) 1.07 (0.89, 1.30) 1.08 (0.86, 1.33)
GPX1 0.86 (0.55, 1.34) 0.88 (0.55, 1.31) 0.89 (0.59, 1.25) 0.96 (0.79, 1.17) 0.96 (0.77, 1.17)
GSTM1 0.95 (0.60, 1.48) 0.93 (0.60, 1.37) 0.92 (0.62, 1.40) 1.07 (0.85, 1.31) 1.01 (0.79, 1.31)
GSTM3 0.65 (0.40, 1.06) 0.67 (0.42, 1.04) 0.77 (0.48, 1.12) 0.92 (0.74, 1.10) 0.92 (0.73, 1.13)
GSTP1 0.85 (0.54, 1.33) 0.90 (0.58, 1.33) 0.93 (0.62, 1.32) 1.04 (0.85, 1.26) 1.06 (0.87, 1.29)
HO1 1.36 (0.86, 2.16) 1.30 (0.84, 1.96) 1.46 (0.96, 2.13) 1.06 (0.88, 1.27) 1.33 (1.06, 1.67)
ICAM-1 0.83 (0.48, 1.44) 0.88 (0.50, 1.44) 0.80 (0.48, 1.27) 0.96 (0.78, 1.15) 0.76 (0.58, 0.96)
MMP9 1.58 (1.01, 2.46) 1.47 (0.95, 2.20) 1.50 (0.99, 2.16) 1.10 (0.92, 1.34) 1.27 (1.00, 1.58)
NOS3 1.13 (0.73, 1.76) 1.19 (0.76, 1.80) 1.14 (0.76, 1.64) 0.98 (0.79, 1.18) 0.98 (0.80, 1.19)
NQO1 1.76 (1.11, 2.78) 1.61 (1.05, 2.44) 1.56 (1.06, 2.27) 1.03 (0.86, 1.27) 1.29 (1.03, 1.62)
PPARR 0.64 (0.37, 1.10) 0.68 (0.39, 1.13) 0.74 (0.45, 1.11) 0.96 (0.79, 1.18) 0.96 (0.76, 1.19)
TGFB1 1.10 (0.70, 1.73) 1.12 (0.74, 1.66) 1.08 (0.70, 1.61) 1.05 (0.86, 1.29) 0.87 (0.68, 1.12)
TNFA 0.61 (0.37, 1.01) 0.69 (0.43, 1.04) 0.63 (0.40, 0.97) 0.97 (0.79, 1.16) 0.76 (0.58, 0.95)

 Statistical significant findings (two-sided p values <5%) are highlighted in bold. 
a OR = Maximum likelihood estimates of odds ratios; CI = confidence interval. 
b OR = Posterior estimates of odds ratios; CI = credible interval. 
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the estimates of the interaction effects for  TNFA  appeared 
to be more consistent across the different hierarchical 
models.

  In general, the risk estimates from the conventional 
regression model were slightly higher compared to those 
derived from the hierarchical model, but the correspond-
ing 95% credible intervals from the hierarchical model-
ing were tighter;  TNFA  had an OR of 1.47 (95% CI 1.05–
2.07) for asthma in the conventional regression model, 
whereas the hierarchical models yielded more precise es-
timates of 1.40 (95% CI 1.00–1.88), 1.48 (95% CI 1.07–
1.98), and 1.28 (95% CI 1.08–1.53) for HM1a, HM1b, and 
HM2b, respectively. From the challenge dataset fitted 
with HM1a, there was very little shrinkage toward the 
overall mean for the posterior estimates of main genetic 
effects and their interactions with DEP treatment. In con-
trast, for HM1b and HM2b, the posterior distributions of 
the first-level model parameters tended to be shrunk 
away from the maximum likelihood estimates towards 
their prior predictions from the second-level model.

  Discussion 

 Measurements of intermediate phenotypes contribut-
ing to the disease process in a biomarker study can help 
discover novel genetic effects and decipher  G  !  E  inter-
actions in an epidemiologic study. Under the Bayesian 
hierarchical modeling framework, joint analysis for inte-
grating related epidemiologic and biomarker studies can 
be performed by relating their first-level regression coef-
ficients via a second-stage univariate (HM1) or multivar-
iate (HM2) linear model, with or without incorporating 
external information (the ‘a’ or ‘b’ versions) into a shared 
prior  Z  matrix. Hence, our proposed hierarchical model-
ing approaches are very flexible to accommodate either 
biomarker measurements from a biologically connected 
study or relevant annotation information as priors for 
joint modeling.

  Our simulation studies demonstrated greater power 
for the proposed hierarchical models compared to sepa-
rate analysis with the standard single-level regression 
modeling approach, while protecting the type I error rate. 
Furthermore, incorporating external information into a 
shared prior and adopting a multivariate linear approach 
for the second-level modeling yielded the most power for 
detection of both the main genetic effects and the  G  !  E  
interactions. Even under scenarios of no disease associa-
tion for any phenotypic biomarker, when compared to the 
traditional regression method, HM1a showed a similar 

performance while HM1b and HM2b had superior per-
formance if the second-stage prior  Z  matrix was highly 
informative (online suppl. table 5). The combined analy-
ses of the CHS and challenge study data suggest that these 
joint analytical methods detected more significant genet-
ic effects and  G  !  E  interactions than the conventional 
analysis. Moreover, HM1b and HM2b can be substan-
tially more powerful than their ‘a’ counterparts by incor-
porating an informative prior  Z  matrix into the second-
level hierarchy. For example, the protective effect of  HO1  
was found only by HM1b and HM2b, but not by the con-
ventional regression analysis, and model HM2b was able 
to identify a positive association of  ICAM-1  with asthma 
risk. Note that  HO1  and  ICAM-1  were specified as asth-
ma-related genes in the  Z  matrix. The biological implica-
tions of these findings were discussed previously  [32, 40] . 
Conversely, in the absence of external biological informa-
tion, HM2a provided no improved performance com-
pared to the conventional analysis for testing the signifi-
cance of  G  and  G  !  E  terms. Lastly, the single-marker 
assessment and recessive genetic coding were used in the 
conventional regression methods from the previous re-
ports  [34] , which may explain the false-negative finding 
of  TGFB1  shown in our results with the standard logistic 
regression approach.

  Current analytical approaches for genetic studies 
range from simple methods like data preprocessing and 
dimension reduction followed by traditional parametric 
regression, to various feature selection and more sophis-
ticated data mining techniques, including Multifactor 
Dimensionality Reduction (MDR)  [41] , tree-based Ran-
dom Forests  [42] , and supervised Support Vector Ma-
chines  [43–45] . However, such approaches have not been 
generalized to joint assessment of related studies of dif-
ferent data types and study designs. Gene set methods 
 [46–48]  and network-based methods  [49–55]  were re-
cently developed as a complement to traditional regres-
sion methods for using biological knowledge about gene 
functions, protein interactions, and pathways. However, 
these post-processing approaches are used only for bio-
logical interpretation of the final results. Meta-analysis is 
a well-established and validated statistical approach for 
pooling evidence across multiple independent studies of 
the same phenotype and comparable designs, weighing 
them by the confidence in the study-specific results and 
the degree of heterogeneity in the study population. This 
method is aimed at increased chances of finding true pos-
itives among the false positives  [56–60]  and has a loosely 
related goal to what we are presenting here, in that case 
to evaluate the causality of a relationship between an in-
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termediate phenotype and disease, using a gene as an in-
strumental variable. However, these approaches aim to 
use assumptions of the biological mechanisms to com-
bine gene-biomarker and gene-disease estimates to ob-
tain an unconfounded biomarker-disease estimate. In 
contrast, we are focused on letting the gene-biomarker 
and gene-disease estimates simply borrow information 
from each other without the strict assumptions required 
for valid inference from instrumental variable analysis. 
Hence, our joint modeling approaches can be potentially 
useful as we move towards more integrative analysis of 
biological and genetic data in future applications.

  Spurred by recent advances in high-throughput tech-
nologies, accumulation of research data concerning the 
genetic basis of common diseases is rapidly increasing in 
speed and complexity. The hierarchical modeling frame-
work proposed here not only performs better than the 
conventional regression methods but is also scalable to 
meet future needs. First, the proposed joint analytic ap-
proaches can be extended to analyze diverse sources of 
relevant biological data. For example, different kinds of 
phenotypic, genotypic, and genomic data from separate 
studies can be linked hierarchically and the distribution 
of observed associations can be estimated jointly. Second, 
instead of assuming an independent prior for the first-
level regression coefficients, one can extend these models 
to incorporate functional relatedness such as gene-gene 
interactions within a pathway. In this regard, similar 
rules built into protein network methods  [52–54]  can be 
applied to model the network properties and represent 
the connection path between genes under a generalized 
hierarchical modeling framework. Although this idea is 
still at an early stage of development, Thomas et al.  [10] 
 have proposed a conceptual form to tackle this problem.

  There are several limitations with the proposed meth-
ods. First, the construction of the second-stage prior  Z  
matrix is limited to functionally annotated disease gene 
families and therefore more likely to be available for bet-
ter characterized genes. Second, crude values of 0 or 1 in 
the  Z  matrix may not reflect the true differences between 
genetic factors and need to be further refined as addi-
tional biological information becomes available. Large-
scale genomewide association studies (GWAS) have 
evolved rapidly and become a standard method for dis-
ease gene discovery. In principle, the proposed hierarchi-
cal modeling approaches can enrich the overall GWAS 
signals by borrowing strength from similarities among 
SNPs. In particular, the probability of specific SNPs be-
ing true positives derived from external studies or rele-
vant biology can be incorporated into prior covariates, 

leading to an increased power for detecting significant 
associations relative to SNPs without prior evidence. 
However, there are additional limitations to consider in 
applications of these models to GWAS data. Specifying 
an informative second-stage  Z  matrix for SNPs can be 
difficult given the limited annotation available for most 
genomic regions. The implementation of a fully Bayesian 
hierarchical modeling approach for integrative analysis 
in GWAS is computationally prohibitive, although pe-
nalized likelihood  [1]  or empirical Bayes  [8]  implementa-
tions may be feasible. For a run on a 64-bit Windows 
server with 24 GB RAM and 2.83 GHz CPU, the model 
fitting may take up to a week for HM1 and a month for 
HM2 for a study size of  1 2,000 subjects,  1 100 SNPs, and 
 1 20 phenotypic markers. Hence, extensions of our pro-
posed models to GWAS are beyond the scope of this pa-
per.

  In conclusion, the prior framework is very flexible, al-
lowing substantive and heterogeneous information to be 
incorporated into the analysis. Such statistical approach-
es provide a potentially valuable path to further integrate 
several disciplines. We have illustrated the hierarchical 
modeling principles first using simulation, and then on 
the candidate gene association data from the CHS and 
biomarker challenge study for joint assessment of the 
main  G  and  G  !  E  interactive effects on asthma risk. Al-
though these methods have computational limitations, 
this approach can be scalable and unified with other bi-
ology-driven methods into one analytical framework.
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