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 Over the past several years, significant evidence has 
expanded our understanding of how lithium might exert 
its mood-stabilizing properties in individuals suffering 
from bipolar disorder. As a result of novel insights into 
these mechanisms, recent work has demonstrated that 
this monovalent cation induces its cellular and molecular 
effects, at least partially, by activating neurotrophic and 
neuroprotective pathways and its associated signaling 
mechanisms. Although the changes that lithium exerts
to produce mood-stabilizing effects have not been com-
pletely clarified, a growing body of evidence supports 
that neurotrophic cascades might be the common de-
nominator underlying lithium’s therapeutic efficacy. In 
this review, we evaluate each of the currently identified 
mechanisms of action, as well as the comparatively lim-
ited evidence available from human studies demonstrat-
ing the neurotrophic and neuroprotective effects of lith-
ium.

  Neurotrophic Signaling Cascades 

 Neurotrophins (NTs) are a family of regulatory fac-
tors. They are known to mediate the differentiation and 
survival of neurons, as well as the modulation of synaptic 
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 Abstract 

 The monovalent cation lithium partially exerts its effects by 
activating neurotrophic and neuroprotective cellular cas-
cades. Here, we discuss the effects of lithium on oxidative 
stress, programmed cell death (apoptosis), inflammation, 
glial dysfunction, neurotrophic factor functioning, excito-
toxicity, and mitochondrial stability. In particular, we review 
evidence demonstrating the action of lithium on cyclic ad-
enosine monophosphate (cAMP)-mediated signal transduc-
tion, cAMP response element binding activation, increased 
expression of brain-derived neurotrophic factor, the phos-
phatidylinositide cascade, protein kinase C inhibition, glyco-
gen synthase kinase 3 inhibition, and B-cell lymphoma 2 ex-
pression. Notably, we also review data from clinical studies 
demonstrating neurotrophic effects of lithium. We expect 
that a better understanding of the clinically relevant patho-
physiological targets of lithium will lead to improved treat-
ments for those who suffer from mood as well as neurode-
generative disorders.  Copyright © 2010 S. Karger AG, Basel 
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transmission and synaptic plasticity. Members of the NT 
family include nerve growth factor (NGF), brain-derived 
neurotrophic factor (BDNF), NT-3, NT-4, NT-5, and NT-
6. BDNF and other neurotrophic factors are necessary for 
the survival and function of neurons; thus, sustained re-
ductions of these factors could affect neuronal viability.

  The acute effects of BDNF on synaptic plasticity and 
neurotransmitter release include the release of glutamate, 
 � -aminobutyric acid, dopamine, and serotonin  [1]  al-
though it is perhaps best known for its long-term neuro-
trophic and neuroprotective effects, which may be key to 
its putative role in the pathophysiology and treatment of 
mood disorders. Endogenous neurotrophic factors have 
traditionally been viewed as increasing cell survival by 
providing necessary trophic support; however, it is now 
clear that their survival-promoting effects are largely me-
diated by inhibiting cell death (apoptosis) cascades  [1] . 
Increasing evidence suggests that neurotrophic factors 
inhibit cell death cascades by activating the extracellular-
regulated kinase (ERK) signaling pathway [cyclic ade-
nosine monophosphate (cAMP) response element bind-
ing (CREB) is directly phosphorylated and activated by 
phospho-ERK1/2], the phospholipase C (PLC)- �  cascade, 
and the phosphoinositide 3-kinase (PI3K)/Akt pathway. 
Complementarily, phospho-CREB reductions observed 
after chronic stress  [2]  could subsequently downregulate 
the transcription of some neurotrophic genes such as B-
cell lymphoma 2 (bcl-2) and BDNF ( fig. 1 ).

  Enhanced bcl-2 expression can offset the potentially 
deleterious consequences of stress-induced neuronal en-
dangerment, suggesting that pharmacologically induced 
upregulation of bcl-2 may be useful in treating a variety 
of disorders associated with endogenous or acquired im-
pairments of cellular resilience. In this context, it is no-
table that severe stress exacerbates stroke outcome by 
suppressing bcl-2 expression  [3] ; for instance, following 
ischemia, 70% less bcl-2 mRNA was expressed by mice 
exposed to aggressive social stress compared with un-
stressed mice. Furthermore, stress greatly exacerbated 
the infarct area in control mice, but this effect was not 
seen in transgenic mice constitutively expressing in-
creased neuronal bcl-2. Similarly, high corticosterone 
concentrations were significantly correlated with larger 
infarcts in wild-type mice but not in transgenic mice 
overexpressing bcl-2. Overall, it is clear that the neuro-
trophic factor-ERK/mitogen-activated protein (MAP) 
kinase-bcl-2 signaling cascade plays a critical role in cell 
survival in the central nervous system (CNS), and that a 
fine balance is maintained between the levels and activi-
ties of cell survival and cell death factors. In parallel, dys-

regulation of the necessary coordination between ERK, 
CREB, and BDNF may also be a key mechanism via which 
prolonged stress induces atrophy of selective subpopula-
tions of vulnerable neurons and/or distal dendrites. Con-
ceivably, the precise kinetics of ERK and CREB activation 
could ultimately dictate whether the activated kinases 
participate in cell death- or survival-promoting path-
ways.

  Lithium Modifies cAMP-Mediated Signal 

Transduction 

 Lithium has complex effects on cAMP-mediated sig-
naling, mainly by elevating basal adenylyl cyclase (AC) 
activity, but also by reducing receptor-stimulated re-
sponses in both preclinical and clinical studies (reviewed 
in Jope  [4] ). G proteins modulate intracellular cAMP lev-
els by mediating the effect of neurotransmitters (via ex-
tracellular receptors) on AC (which catalyzes the con-
version of adenosine triphosphate to cAMP). Indeed,
preclinical studies conducted by several independent in-
vestigators found that the ability of the receptor-medi-
ated signal to be propagated via AC is decreased after lith-
ium treatment  [4, 5] . These extensive cellular findings are 
consistent with an animal model in which the cholera 
toxin induced G s  and G olf  protein hyperactivity when in-
jected into the nucleus accumbens of rats; furthermore, 
cholera toxin-induced hyperactivity was decreased after 
lithium administration  [6] , consistent with decreased G s 
 and/or G olf  activity during lithium treatment ( fig. 1 ). 
However, while stimulated levels were decreased, there 
was evidence to suggest increased basal cAMP activity 
 [4] . These complex and potentially regional specific ef-
fects on basal activity and stimulated AC activity may 
arise from the effects of lithium on G proteins and AC 
subtypes, as well as their relative abundance in different 
brain regions  [4] .

  The physiologic effects of cAMP are primarily medi-
ated by activation of protein kinase A (PKA), an enzyme 
that phosphorylates and regulates many proteins includ-
ing ion channels, cytoskeletal elements, transcription 
factors, and other enzymes. The transcription factor 
CREB is one of PKA’s major direct targets in the CNS 
(PKA phosphorylates and activates CREB), and it plays a 
major role in long-term neuroplasticity (although the 
cAMP signaling pathway does much more than simply 
regulate CREB activity). As mentioned above, one of the 
genes activated by CREB is BDNF, a protein implicated 
in neuronal survival and synaptic plasticity. A growing 
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  Fig. 1.  Neurotrophic and neuroprotective pathways targeted by 
lithium. BDNF receptor (Trk-B) activation activates the ERK/
MAPK pathway, which inhibits GSK-3 �  (a critical cellular target 
and effector for diverse proteins) and bad. This activation increas-
es the expression of nuclear CREB, in turn facilitating the expres-
sion of neurotrophic/neuroprotective proteins such as bcl-2 and 
BDNF itself. Mitochondrial bcl-2 also inhibits pro-apoptotic ac-
tivation of bad, as well as consequent mitochondrial increases of 
calcium influx and cytochrome c release. Dysregulated intracel-
lular calcium levels, which may increase the risk of cellular apop-
tosis, have been associated with the pathophysiology of bipolar 
disorder. Lithium downregulates ER calcium release via an IP 3 R-
dependent mechanism, and also increases bcl-2 expression, which 
improves mitochondrial stability and prevents the activation of 
apoptotic cascades. IMPase, also directly inhibited by lithium, re-
cycles IP 3 . In addition, cellular signaling through Wnt glycopro-
teins and frizzled receptors inhibits GSK-3 � . Lithium’s inhibition 
of GSK-3 �  prevents  � -catenin phosphorylation and stimulates its 
translocation to the nucleus, thus targeting the transcription of 

specific genes activating neurotrophic effects and synaptogenesis. 
Different neurotransmitters target receptors coupled to G pro-
teins. Among these, D 1 , D 5 , and  � -adrenergic receptors are cou-
pled to G �  stimulatory proteins that activate AC; H 3 , D 2 , D 3 , and 
D 4  receptors are coupled to G �  inhibitory proteins that inhibit 
AC; serotonergic,  �  1 -adrenergic, M 1 , M 3 , and M 5  receptors are 
coupled to G q/11 , which activates PLC. PLC, in turn, hydrolyses 
PIP 2  to IP 3  and DAG. DAG activates PKC, which plays a signifi-
cant role in regulating pre- and postsynaptic aspects of neuro-
transmission and diverse cellular processes. Lithium also indi-
rectly inhibits PKC. The text provides a complete description of 
these interactions. Arrows represent ‘activation’, perpendicular 
lines represent ‘inhibition’, and dotted lines represent ‘indirect 
effects’. bad = bcl-2-associated death promoter; bag-1 = bcl-2-
associated athanogene; GPCR = G-protein-coupled receptors; 
IP 3 R = IP 3  receptor; MARCKS = myristoylated alanine-rich C
kinase substrate; Raf, MEK, ERK, RSK = components of the
ERK pathway; Trk-B = tropomyosin receptor kinase.   
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body of data suggests that agents that directly modulate 
the cAMP-PKA-CREB-BDNF signaling cascade may be 
of particular interest for the development of novel agents 
to treat depressive disorders  [7] . Interestingly, lithium 
and valproate – both of which are mood stabilizers used 
in the treatment of bipolar disorder – are known to in-
crease BDNF levels in the brains of rats treated chroni-
cally with these drugs  [8–10] .

  Lithium Activates CREB and Increases BDNF 

Expression 

 At therapeutically relevant concentrations, both lithi-
um and valproate activated the ERK/MAP kinase cas-
cade in human neuroblastoma SH-SY5Y cells in vitro 
 [11] ; in vivo, these agents activated the same cascade in 
the hippocampus and frontal cortex areas of the rodent 
brain  [8] . Lithium also activated ERK1/2 after ischemia, 
and significantly increased cell proliferation in the hip-
pocampal dentate gyrus  [12] . Via CREB, the activation of 
the ERK/MAP kinase pathway initiates the transcription 
of BDNF, and also induces bcl-2 gene expression. Consis-
tent with the activation of neurotrophic signaling cas-
cades, chronic treatment of rats with therapeutically 
equivalent lithium or valproate concentrations increased 
the activation of ribosomal S6 kinase (a member of the 
MAPK signaling pathway) and CREB, and eventually 
doubled bcl-2 levels in the frontal cortex, as evidenced by 
an increased number of bcl-2 immunoreactive cells in 
layers II and III of the frontal cortex  [13–16] .

  Several preclinical studies have also investigated the 
effects of lithium on CREB phosphorylation and activity 
with mixed overall results  [8, 17, 18] . For instance, ad-
ministration of lithium or valproate increased expression 
of BDNF in the rodent brain  [8, 9] , particularly in the hip-
pocampus  [19]  and frontal cortex  [20] . Therapeutic con-
centrations of lithium selectively increased levels of exon 
IV-containing BDNF mRNA, and the activity of BDNF 
promoter IV  [21] . While studies have obtained both pos-
itive and negative results after lithium exposure  [22, 23] , 
most recent evidence suggests that the neurotrophic ef-
fect of lithium in cortical neurons requires BDNF ex-
pression  [24] . In humans, recent data suggested that the 
Val66Met BDNF gene polymorphism may be associated 
with the degree of prophylactic response to lithium; there 
was a trend for the Met allele genotype to be associated 
with a higher incidence in positive responders to lithium 
compared to nonresponders  [25] . On the other hand, 
postmortem studies have noted that individuals with bi-

polar disorder treated with lithium had reduced CREB 
phosphorylation  [26, 27] , although the postmortem in-
stability of phosphorylated proteins is a well-known con-
cern in interpreting such reports.

  Finally, the modification of other neurotrophic factors 
has also been associated with chronic lithium treatment. 
Changes in NGF and glial cell line-derived neurotrophic 
factor were observed in a rat model of depression  [10] , in-
cluding significant increases of NGF concentrations in 
the frontal cortex, limbic forebrain, hippocampus, and 
amygdala of adult rats  [28] . Lithium also increased serum 
and hippocampal NT-3 levels in an animal model of ma-
nia  [29] , and upregulated vascular endothelial growth 
factor in brain endothelial cells and astrocytes  [30] . Inter-
estingly, vascular endothelial growth factor has been im-
plicated in neuronal survival, neurotrophic effects, re-
generation, growth, and differentiation. Consistent with 
these effects on neurotrophic signaling cascades, lithium 
was found to be neuroprotective in other animal and cell 
models of neuronal insult and disease  [31, 32] , to promote 
neurogenesis in the hippocampus of rats, and to increase 
the regeneration of CNS axons  [33] .

  Lithium Modifies the PI Cascade and Inhibits Protein 

Kinase C 

 Inositol phospholipids play a key role in receptor-me-
diated signal transduction pathways, and are implicated 
in a variety of responses including cell division, secretion, 
neuronal excitability, and responsiveness. The PI path-
way is initiated by the activation of G-protein-coupled 
receptors, which pair neurotransmitter receptors to mul-
tiple types of intracellular effector proteins. M1, M2, M3, 
a1, and serotonin receptors coupled to G �  q/11  induce PLC, 
which hydrolyzes phosphatidylinositol-4,5-bisphosphate 
(PIP 2 ) to yield 2 second messengers: inositol-1,4,5-tri-
phosphate (IP 3 ) and diacylglycerol (DAG). IP 3  and DAG 
subsequently modulate the activity of many intracellular 
events. IP 3  binds to the IP 3  receptor [facilitating the re-
lease of calcium from intracellular stores, particularly in 
the endoplasmic reticulum (ER)]  [34, 35] , and DAG acti-
vates protein kinase C (PKC) ( fig. 1 ).

  The direct effect of lithium on inositol monophospha-
tase (IMPase)  [36, 37]  and, secondarily, on inositol poly-
phosphate 1-phosphatase  [38, 39]  led to the inositol deple-
tion hypothesis of lithium action  [40, 41] . This hypothesis 
suggests that lithium exerts its mood-stabilizing effects 
by inhibiting IMPase, thereby decreasing inositol con-
centrations and the amount of PIP 2  available for signal-
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ing cascades that rely upon this pathway; this includes, 
but is not limited to, the neurotrophin signaling path-
ways, the receptor tyrosine kinase pathways, and the G-
protein-mediated signaling, all of which rely on PI avail-
ability  [40] . The brain is believed to be particularly sensi-
tive to lithium, due to the relatively poor penetration of 
inositol across the blood-brain barrier  [40]  or to a re-
duced ability of specific neuronal populations to trans-
port inositol across their cell membranes  [42] . In fact, it 
has been shown that lithium, carbamazepine, and val-
proate inhibit sodium myo-inositol transporter 1 (SMIT1) 
on astrocyte-like cells at therapeutically relevant concen-
trations  [43] . More recently, homozygote knockout mice 
for the SMIT1 gene (receiving inositol supplementation) 
appeared to behave similarly to lithium-treated animals 
in seizure and depression models  [44] . However, it has 
also been reported that reduced intracellular inositol in 
the brains of SMIT1 knockout mice had no effect on PI 
levels  [45] , suggesting that inositol depletion may not 
have major effects on PI-mediated signaling in this para-
digm. Importantly, it has also been reported that the con-
tent of SMIT1 mRNA in neutrophils of untreated patients 
with bipolar I disorder is higher than in a control popula-
tion while the levels are reduced in treated versus control 
and untreated bipolar subjects  [46] . Although there are 
some limitations associated with the peripheral nature of 
the cells studied (that may not reflect brain pathophysiol-
ogy) and the post hoc origin of the analysis, this hypoth-
esis generating research confirms the need to better un-
derstand the role that PI pathways play in bipolar disor-
der.

  As mentioned above, lithium interacts with the PI/
PKC pathway by inhibiting IMPase, resulting in de-
creased free myo-inositol and the subsequent production 
of DAG, with the downstream effect of also decreasing 
PKC levels and activity (in some cell culture models, there 
is evidence of a biphasic action showing initial PKC acti-
vation followed by downregulation). PKC is an omnipres-
ent enzyme, and highly enriched in the brain, where it 
regulates both pre- and postsynaptic aspects of neuro-
transmission  [47] , as well as several cellular processes. 
These include the stimulation of transmembrane glucose 
transport, secretion, exocytosis, smooth muscle contrac-
tion, gene expression, modulation of ion conductance, 
cell proliferation, and desensitization of extracellular re-
ceptors  [47] . Interestingly, certain PKC isoforms phos-
phorylate and inactivate glycogen synthase kinase 3 
(GSK-3) in vitro  [48]  (see below).

  PKC isoforms differ in their structure, subcellular lo-
calization, tissue specificity, mode of activation, and sub-

strate specificity. It is important to note that chronic lith-
ium treatment decreases the level of PKC isozymes  �  and 
 �   [49–51]  in cells as well as in treated rodents (in part due 
to the ability of lithium to inhibit IMPase  [32, 49] ). Fol-
lowing chronic treatment in rats, lithium also decreases 
the levels and phosphorylation of myristoylated alanine-
rich C kinase substrate, a major PKC substrate that has 
been implicated in signaling and neuroplastic events as-
sociated with cytoskeletal architecture  [52, 53] .

  Taken together with the abundant preclinical bio-
chemical and behavioral data supporting the notion that 
PKC activity may mediate manic-like behaviors, the in-
hibition of PKC by lithium led to a series of hypothesis-
driven clinical studies investigating this relationship. The 
first study of a fairly selective PKC inhibitor in humans 
was a small, open-label trial of tamoxifen, which was 
found to produce a greater than 50% decrease in manic 
symptoms in 5 of 7 subjects  [54] . Furthermore, this effect 
was very recently confirmed in 2 double-blind, placebo-
controlled studies of acutely manic patients by the origi-
nal researchers  [55] , and by an independent group of in-
vestigators  [56] .

  Action of Lithium on the Arachidonic Acid Signaling 

Cascade 

 Lithium also plays an important role in the arachi-
donic acid (AA) cascade. AA is an important mediator of 
second messenger pathways in the brain  [57, 58] , and is 
released from membrane phospholipids via the activa-
tion of receptor/G-protein-initiated phospholipase A2 
(PLA2)  [59] . This results in AA release from the cellular 
membrane, and cyclooxygenase-mediated production of 
eicosanoid metabolites such as prostaglandins and 
thromboxanes. Due to their lipid-permeable nature, these 
metabolites mediate numerous subsequent intracellular 
responses as well as transynaptic responses. In rats, treat-
ment with lithium or valproate resulted in selective re-
ductions in the turnover rate in the brain phospholipids 
of AA  [60–62] . In the case of lithium, an 80% reduction 
of AA turnover was observed. In addition, lithium de-
creased the gene expression and protein levels of an AA-
specific PLA2 (specifically, cytosolic PLA2)  [63, 64] , as 
well as cyclooxygenase 2 protein levels  [65] . These find-
ings suggest that the effects of mood stabilizers on cell 
membranes – and specifically on AA turnover – might be 
relevant to the pharmacological action of mood stabiliz-
ers  [58, 62] .
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  Competition of Lithium with Magnesium 

 Lithium also inhibits some enzymes through direct 
competition with magnesium, an often-required cofac-
tor  [5, 66, 67] . At least 4 related phosphomonoesterases 
are significantly inhibited at therapeutic serum lithium 
concentrations  [68]  (0.6–1.2 m M ); in mammals, this 
group of magnesium-dependent, lithium-sensitive phos-
phatases includes inositol polyphosphate 1-phosphatase 
and IMPase (discussed above), fructose 1,6-bisphospha-
tase, bisphosphate nucleotidase  [69] , and phosphogluco-
mutase  [70–73] . A significant amount of research has fo-
cused on IMPase as a possible therapeutically relevant 
target of lithium inhibition, predominantly due to the 
role this enzyme plays in CNS functions  [74] .

  GSK-3 Inhibition by Lithium 

 GSK-3 is a serine/threonine kinase that regulates di-
verse cellular processes and directly regulates cell apop-
tosis. It is key to glycogen synthesis, gene transcription, 
synaptic plasticity, apoptosis (cell death), cellular struc-
ture and resilience, and the circadian cycle  [75] , all of 
which are significantly implicated in the pathophysiol-
ogy of severe recurrent mood disorders. In 1996, GSK-3 
was identified as the lithium target responsible for de-
velopmental effects in Xenopus embryos  [76] , but more 
recently, further evidence substantially supports the 
claim that GSK-3 is one of the  therapeutic  targets of lith-
ium.

  GSK-3 �  activation functionally inhibits CREB,  � -
catenin (an important component of memory consolida-
tion), and other survival-promoting transcription fac-
tors. GSK-3 is also directly regulated by signals originat-
ing from a number of different signaling pathways 
including the Wnt pathway, the PI3K pathway, PKA, and 
PKC. Its other targets include transcription factors like 
c-Jun, proteins bound to microtubules (Tau, microtu-
bule-associated protein 1B, kinesin light chain), cell cycle 
mediators (cyclin D), and metabolic regulators (glycogen 
synthase, pyruvate dehydrogenase)  [77] . GSK-3 also di-
rectly regulates the dopaminergic, glutamatergic, and se-
rotonergic neurotransmitter systems (reviewed in Beau-
lieu et al.  [78]  and Jope and Roh  [79] ). It is interesting to 
note that increases in phosphorylated GSK-3 levels have 
also been observed by 5-HT1A receptor activation, 5-
HT2 receptor blockage  [80] , and by atypical antipsychot-
ic administration (with D 2  but also 5-HT2A blocking ac-
tivity) in experiments with mice  [81] .

  Early studies suggested that peripheral administration 
of lithium inhibited GSK-3 in the brains of 7-day-old rats 
 [82] , as well as during long-term treatment at therapeutic 
concentrations. Investigators also found that 9 days of 
lithium treatment in rats (at a mean serum concentration 
of 0.8 m M ) increased cytosolic protein levels of  � -catenin, 
a transcription factor directly regulated by GSK-3  [83] . 
Small but significant decreases in  � -catenin mRNA lev-
els (reflecting cellular compensation) accompanied this 
increase, further suggesting that lithium exerted its ac-
tions post-translationally by inhibiting GSK-3  [83] . Simi-
lar findings have noted that chronic lithium does indeed 
activate  � -catenin-dependent transcription in the mouse 
brain  [84]  ( fig. 1 ).

  Because GSK-3 inhibition is commonly associated 
with the neurotrophic effects of different survival factors, 
this kinase may mediate the neuroprotective effects of 
lithium. In fact, GSK-3 inhibition directly influences 
gene transcription, leading to anti-apoptotic effects and 
improved cell structural stability  [85] . Notably, diverse 
studies have noted that GSK-3 is downregulated by lithi-
um, thereby inducing direct neuronal protection against 
different injuries  [86] , and providing new insights into 
the neurotrophic effects of lithium (reviewed in Jope  [4] ). 
Furthermore, recent evidence suggests that the behavior-
al effects of lithium, at least in rodent models, may also 
be due to GSK-3 inhibition. For instance, the administra-
tion of GSK-3 inhibitors resulted in antidepressant-like 
effects in the forced swim test paradigm following either 
peripheral lithium administration in rats  [71] , or lithium 
administration in mice  [84] , including intracerebral ven-
tricle injections in mice  [87] . While initial reports sug-
gested that knocking out a single copy of the GSK-3 �  gene 
in mice resulted in antidepressant-like effects analogous 
to lithium administration  [84] , these findings were sub-
sequently not confirmed in mice of a different genetic 
background  [88] .

  More recently, transgenic mice overexpressing  � -
catenin demonstrated changes comparable to those ob-
served following lithium administration. These changes 
included decreased immobility time in the forced swim 
test and the inhibition of  D -amphetamine-induced hy-
perlocomotion. Such findings are consistent with the no-
tion that the behavioral effects of lithium are mediated 
via direct inhibition of GSK-3 and the consequent in-
crease in  � -catenin  [89] .
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  Effect of Lithium on bcl-2 and Mitochondrial 

Function 

 The regulatory effects of lithium on apoptosis-con-
trolling proteins appear to occur in both the mitochon-
dria  [35]  and the ER  [90–92] . Relatedly, altered calcium 
dynamics are the most reproducible biological measure 
in the pathophysiology of bipolar disorder (reviewed in 
Quiroz et al.  [35]  and Warsh et al.  [93] ). A large movement 
of calcium into the mitochondria will exceed the mito-
chondrial capacity to export protons, potentially inter-
rupting adenosine triphosphate synthesis and the activa-
tion of the permeability transition pore with release of 
cytochrome c, thus initiating cellular apoptosis  [35] . In 
addition, excessive production of reactive oxygen species 
(or free radicals) triggered by mitochondrial dysfunction 
may lead to oxidative stress, regardless of whether or not 
this is related to lower antioxidant capacity.

  Mitochondria are well known for their critical role in 
regulating energy production via oxidative phosphoryla-
tion, regulation of intracellular calcium, and as critical 
mediators of cellular apoptosis. Increasing evidence sug-
gests that they may also be integrally involved in general 
processes of synaptic plasticity  [35] . As noted previously, 
the bcl-2 family of proteins includes both pro- and anti-
apoptotic proteins embedded in the inner mitochondrial 
membrane, although they may also be present in nuclear 
membranes and in the ER. Therefore, expression and/or 
activation of pro-apoptotic bcl-2 family members (e.g. 
bad and bax) may increase mitochondrial membrane 
permeability, while anti-apoptotic members (e.g. bcl-2 
and bcl-xl) have the opposite effect  [35] . Interestingly, 
lithium also increases the expression of bcl-2-associated 
athanogene (bag-1), which is known to attenuate gluco-
corticoid receptor nuclear translocation, to activate the 
ERK/MAP kinases, and to potentiate the anti-apoptotic 
functions of bcl-2  [94]  ( fig. 1 ).

  Several biochemical changes have been hypothesized 
to account for the neurotrophic properties of lithium 
against oxidative stress and apoptosis, including its abil-
ity to regulate bcl-2. bcl-2 levels were found to be robust-
ly increased in the frontal cortex after lithium treatment, 
particularly in layers II and III  [13] . Also, long-term lith-
ium treatment of cultured cerebellar granule cells in-
duced concentration-dependent decreases in p53 mRNA 
levels as well as bax protein levels (both of which are pro-
apoptotic), while acute treatment had no effect. Con-
versely, bcl-2 mRNA and protein levels increased consid-
erably with long-term lithium treatment, and the bcl-2/
bax protein level ratio increased approximately 5-fold af-

ter lithium treatment for 5–7 days  [16] . Furthermore, 
chronic treatment with lithium in drinking water pre-
vented the aluminum-induced translocation of cyto-
chrome c, upregulating bcl-2 and bcl-xl, and thus reduc-
ing DNA damage. As noted previously, animal models 
have also noted a relationship between stress and bcl-2 
expression.

  Human Studies Demonstrating the Neurotrophic 

Effects of Lithium 

 While the preclinical data demonstrating that lithium 
has neurotrophic and neuroprotective effects are strik-
ing, considerable caution must be exercised in extrapolat-
ing these data to human clinical situations, where the 
data regarding the neurotrophic effects of lithium are 
considerably more limited.

  The most replicated finding from structural neuroim-
aging studies is the association between lithium treat-
ment and increased gray matter (GM) volume in brain 
areas implicated in emotional processing and cognitive 
control, including the anterior cingulate gyrus, amygda-
la, and hippocampus  [95, 96] . In structural studies, re-
analyzed data demonstrated approximately 40% reduc-
tions in subgenual prefrontal cortex volumes in individu-
als with familial mood disorders  [97] . These investigators 
also studied glial cell densities in a small number of indi-
viduals with major depressive disorder and found that 
they exhibited reduced glial cell densities; in contrast, in 
individuals with bipolar disorder, only those who had 
discontinued chronic treatment with lithium or valpro-
ate exhibited similar reductions  [98] , suggesting that 
these mood stabilizers conferred neuroprotective prop-
erties.

  More recently, a longitudinal high-resolution volu-
metric MRI study of well-characterized, medication-free 
individuals with bipolar depression compared total brain 
GM, prefrontal GM, and left subgenual GM at baseline 
and after 4 weeks of blinded lithium treatment  [93] . Sig-
nificant increases in total brain GM were observed after 
chronic lithium administration. Furthermore, region-
specific analyses revealed significant differences between 
lithium responders ( 1 50% decrease in Hamilton Depres-
sion Rating Scale scores) and nonresponders; only the 
lithium responders had significant increases in GM vol-
ume in the prefrontal cortex and a trend level increase in 
the left subgenual prefrontal cortex volume  [99] . Another 
study found that individuals with bipolar disorder not 
treated with lithium had significantly reduced left ante-
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