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 Introduction 

 About 10 years ago, John Dick’s team provided evi-
dence that leukemia growth and propagation are driven 
by a small population of leukemia cells that have the abil-
ity to perpetually self-renew. They called this cell popula-
tion cancer stem cells (CSC)  [1] . Since then, putative CSC 
have been isolated from many other tumors including 
breast, brain, colon, pancreas, prostate, lung and head 
and neck tumors  [2–9] .

  The development and evolution of the mammary 
gland suggest that stem cells play a pivotal role in the bi-
ology of this organ. Indeed, the mammary gland is a 
unique organ in that it undergoes most of its development 
after birth and follows the genital events during all life. 
To achieve this great plasticity and the large cell number 
expansion associated with it, a considerable number of 
adult breast stem cells are required. It is tempting to spec-
ulate that this fact renders the mammary gland particu-
larly prone to carcinogenesis and that adult breast stem 
cells play a very important role in breast cancer.

  CSC display particular and ‘dangerous’ features that 
can have fundamental implications for breast cancer de-
tection, prevention and treatment. Among other things, 
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 Abstract 

 There is increasing evidence for the cancer stem cell hypoth-
esis, which holds that cancers are driven by a cellular sub-
component that has stem cell properties, that is, self-renew-
al, tumorigenicity and multilineage differentiation capacity. 
The cancer stem cell hypothesis modifies our conceptual ap-
proach of oncogenesis and shall have implications in breast 
cancer prevention, detection and treatment, especially in 
metastatic breast cancer for which no curative treatment ex-
ists. Given the specific stem cell features, novel therapeutic 
pathways can be targeted. Following this approach, new 
molecules are currently in development. Focusing on the 
cross-talk between stem cells and their microenvironment is 
also a promising way to explore how to better target cancer 
stem cells and be curative.  Copyright © 2008 S. Karger AG, Basel 
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CSC foster blood vessel formation, promote cell motility 
as well as resistance to a variety of therapies  [10] , and are 
implicated in breast metastasis  [11, 12] . The link with me-
tastasis is of special clinical relevance, given the evolution 
of mortality in breast cancer. Although the overall mor-
tality for some of the most common epithelial malignan-
cy including breast cancer has recently been declining, 
the survival of patients with metastatic disease has not 
changed significantly over the past several decades. In a 
recent study  [11] , cells with a ‘stem phenotype’ were found 
in all disseminated tumor cells in the bone marrow. In 
addition to the putative therapeutic resistance of the CSC, 
these findings offer new clues for understanding the bad 
outcome of metastatic breast cancer. As our ability to at-
tack specific pathways altered in cancer increases, the 
fundamental question remains: Are we targeting the 
right cells? Hopes for new treatments that selectively kill 
these cancer seeds come from recent work uncovering the 
signaling pathways that control CSC proliferation  [13] .

  In breast cancer, the discovery of tumor cells that be-
have like stem cells offers a possible explanation why can-
cer may be so difficult to eradicate and suggests how new 
therapies might be targeted.

  In this review, we will discuss the implications that the 
CSC hypothesis may have on our basic understanding of 
oncogenesis, as well as the implications for developing 
new therapies.

  The CSC Hypothesis and Conceptual Implications 

 All tissues in the body are derived from organ-spe-
cific stem cells that are defined by their capacity to un-
dergo self-renewal as well as differentiation into the cell 
types that comprise each organ. These cells maintain tis-
sue integrity.

  According to the CSC hypothesis, in the breast as well 
as in other tissues, cancer arises from normal stem cells 
that undergo oncogenic transformation. Cancer-causing 
mutations can also strike more developmentally ad-
vanced, although still immature, early progenitor cells 
 [14] . Recent work provided support for this idea, based on 
the features of gene fusions found in human acute my-
eloid leukemia. A fusion protein called MLL-AF9 was ge-
netically engineered in granulocyte-macrophage pro-
genitor cells and transplanted into mice where it gener-
ated leukemia similar to acute myeloid leukemia. Isolation 
of the leukemia stem cells from these mice showed that 
they resembled the original granulocyte-macrophage 
progenitors, but had activated genes needed for self-

 renewal  [15] . In solid tumors, stem cells of a given type of 
cancer may arise from different cells  [16] .

  The CSC hypothesis implies a paradigm shift in think-
ing about oncogenesis  [17] . In contrast to the ‘stochastic’ 
model of oncogenesis where transformation results from 
random mutations and subsequent clonal selection, in 
this model, cancer originates in tissue stem or progenitors 
cells probably through dysregulation of self-renewal 
 pathways. This leads to expansion of this cell population 
that may undergo additional genetic and epigenetic chang-
es. The nature of these genetic and epigenetic changes, 
and the type of progenitor they target, probably contrib-
ute to the cellular heterogeneity found in tumors.

  In the normal breast, stem cell differentiation gener-
ates organ-specific cell lineages: ductal luminal, myoepi-
thelial and alveolar epithelial cells. In breast cancer, it is 
assumed that CSC can generate cells with a certain type 
of aberrant and limited differentiation, which somehow 
translate into breast molecular subtypes  [18] . Epigenetic 
changes can influence this abnormal tumor differentia-
tion through the niche where the cells grow. In addition, 
tumor differentiation may also be influenced by the cell 
of origin (stem cell or progenitor) and the oncogenic 
events that occurred (the mutation that initiated the 
transformation and the additional events that followed 
this initial event). To understand how the CSC hypothesis 
can be integrated in the new molecular taxonomy of 
breast cancer and how it can at least partially explain 
breast cancer heterogeneity is an important challenge 
 [19] . Mouse mammary gland research gives clues to im-
prove this knowledge.

  In the mouse mammary gland, stem cells have been 
isolated and characterized. Stingl et al.  [20]  recently re-
ported the use of multiparameter cell sorting to purify a 
rare subset of adult mouse mammary stem cells that are 
able individually to regenerate an entire mammary gland 
within 6 weeks in vivo. These cells, sorted as CD45 –  
Ter119 –  CD31 –  Sca-1 low  CD24 med  CD49f high  cell popula-
tion, were designated as mammary repopulating unit and 
expressed markers associated with basal/myoepithelial 
cells (keratin 5 and 14, smooth muscle actin, vimentin 
and smooth muscle myosin). They differed from progen-
itor cells that represented the mammary colony-forming 
cells and expressed higher level of luminal transcripts 
(keratin 8, 18 and 19 as well as casein) and keratin 6 pro-
tein  [20] . Stingl et al.  [20]  thus reported that mouse mam-
mary sorted breast stem cells express basal markers. By 
analyzing transplants, Regan and Smalley  [21]  showed 
that mouse mammary stem cells are found in the bas -
al/myoepithelial compartment (CD24 low /Sca-1 – /Promi-
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nin-1 – ), whereas in vitro colony progenitors are found in 
the luminal compartment. This luminal compartment 
could be split into estrogen receptor-positive (ER+) and 
ER-negative (ER–) cells and contain very few transplant-
able cells  [22] . The ER– CD24 high /Sca-1 – /Prominin-1 –  
population expressed milk proteins and contained the 
highest number of in vitro colony-forming cells. The ER+ 
CD24 high /Sca-1 + /Prominin-1 +  cells expressed prolactin 
and progesterone receptor and more luminal cytokera-
tins than the ER– luminal cells. This compartment forms 
a differentiated hormone-sensing compartment that 
stimulates proliferation of basal stem cells and luminal 
transit amplifying or progenitor cells in a paracrine man-
ner. The transcription factor GATA3, essential in mam-
mary morphogenesis both in embryo and adult mice, is a 
critical regulator of luminal differentiation  [23] .

  Boecker and colleagues first described heterogenous 
populations in the normal human adult mammary gland 
 [24, 25] . Using immunofluorescence for basal cytokeratin 
5, glandular cytokeratins 8/18 or myoepithelial smooth 
muscle actin, they identified progenitor cells of glandu-
lar/luminal and myoepithelial cell lineages  [24] . They 
proposed that different cellular subgroups in the mam-
mary gland give rise to subgroups of breast carcinomas 
with differing protein expression and cytogenetic altera-
tions that may be related to clinical behavior  [26] . Before 
a classification based on gene expression profiling was 
published  [27] , they first proposed a classification of 
breast carcinomas based on cytokeratin expression with 
clinical impact  [25, 26] . These data have been validated 
by many groups all around the world concerning the im-
pact of cytokeratin-based classification on prognosis and 
taxonomy of breast cancer  [28–33] . Recently, they further 
proposed that vimentin-expressing carcinomas derive 
from breast progenitor cells with bipotent (glandular and 
myoepithelial) differentiation capacity  [34] .

  When all data are taken together, it may be hypothe-
sized that in some cases of breast cancer such as basal 
breast cancer, there is a ‘block’ in differentiation, where 
most cells constituting the bulk of the tumor are not dif-
ferentiated cells  [19, 32, 33] . Basal breast tumors are the 
most stem-like cells, mainly composed of cells expressing 
the cancer stem cell marker CD44 +   [35–37]  and cytoker-
atin 5/6. Basal breast tumors are generally associated with 
poor outcome. The other subtype with bad outcome is the 
ERBB2-like breast cancer.

  Recent work from our group (presented this year at the 
annual meeting of the American Association for Cancer 
Research) suggests a strong link between ERBB2-like tu-
mors and stem cells. We reported that modulation of sig-

naling molecules such as phosphatase and tensin homo-
log on chromosome 10 (PTEN) or ERBB2 can increase 
the size of the stem cell population. Boosting the expres-
sion of the  ERBB2  oncogene at the same time as reducing 
the expression of the  PTEN  tumor suppressor gene can 
have additional effects on expanding the stem cell popu-
lation  [13] .

  A better characterization of CSC that initiate and drive 
tumor growth, evolution and response to therapy appears 
more than ever an essential step to improve breast cancer 
knowledge and management  [38] . In addition to provid-
ing a basis to an integrated (cellular and molecular) tax-
onomy of breast cancer, the characterization of CSC calls 
for therapeutic changes.

  Purification and Isolation of CSC 

 To isolate and purify the stem cell component of a tu-
mor is a great challenge. The following section will pres-
ent some of the current ways to achieve this goal, also 
resumed in  figure 1 . The different methods can be cate-
gorized into general methods based on intrinsic stem 
cells features, supposed to be universal across tissues and 
organs, and tissue-specific methods often based on tis-
sue-restricted properties that can vary depending on the 
organ considered.

  Side Population Technique 
 This method is based on the overexpression of trans-

membrane transporters, like the ATP-binding cassette 
molecules  ABCG2/BCRP1 . In stem cells, these molecules 
exclude vital dyes such as Hoechst 33342 or rhodamine 
123 from the cells, a property not found in differentiated 
cells that remain positive for the dye. A side population 
has been isolated from the breast cancer cell line MCF7, 
representing 2% of the total cell line and containing the 
only tumorigenic fraction from MCF7, as demonstrated 
by transplantation experiments in NOD/SCID mice xe-
nografts. This fraction is also able to reconstitute the ini-
tial heterogeneity of the cell line  [39, 40] .

  Tumorospheres 
 This is a cell culture technique adapted for breast tu-

moral tissue based on the mammosphere culture, which 
was used to isolate and expand stem/progenitor cells 
from normal breast by our group  [41] . Tumorospheres 
generated in vitro by breast cancer cells are enriched
in stem/progenitor cells, as shown by the increase in
SP fraction and in CD44 +  CD24 –/low  lin –  cells  [42] . This 
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technique is based on the unique property of stem/pro-
genitor cells to survive and grow in serum-free suspen-
sion, while more differentiated cells undergo anoikis and 
die in these conditions.

  The CD44 +  CD24 –/low  Lin –  Phenotype 
 The growing interest in solid CSC began in 2003 when 

CSC were prospectively isolated from breast tumors  [43] . 
We identified a population of cells that displayed CSC 
features. This population was defined by the expression 
of cell surface markers (CD44 +  CD24 –/low  lin – ). As few as 
200 of these cells were able to form tumors in NOD/SCID 
mice, whereas 20,000 cells that did not display this phe-
notype failed to do so. The tumors formed in mice com-
prised the entire phenotypical heterogeneity of the initial 
tumor. The CD44 +  CD24 –/low  lin –  population from these 
tumors was able to reinitiate tumors by xenotransplanta-
tion in NOD/SCID mice. This behavior indicated that 
they were able to self-renew and differentiate, and that 

they were the tumorigenic population of the tumors, 
therefore presenting CSC features. CD44 appears to be a 
shared stem cell marker, common to different organs and 
pathologies  [8, 16, 44] , as well as a promising therapeutic 
target  [45, 46] . The CD44 +  CD24 –/low  lin –  phenotype, 
however, is probably tissue restricted. For example, in 
pancreatic tumors, a stem cell population with the CD44 +  
CD24 –/low  lin +  phenotype  [7]  was isolated. Another limi-
tation, even within breast tumors, should be the hetero-
geneity of this population that does not contain all breast 
CSC. For example, the overlap with ALDEFLUOR-posi-
tive population shown to contain breast CSC is very small 
 [47] .

  Aldehyde Dehydrogenase 
 This method has been recently used to isolate stem 

and progenitor cells from the normal and tumoral breast. 
It is based on enzymatic activity of aldehyde dehydroge-
nase 1 (ALDH1), a detoxifying enzyme responsible for 

  Fig. 1.   Purification and isolation techniques of breast CSC.  a  Side 
population technique in MCF7 cell line. Stem cells exclude 
Hoechst 33342 through their overexpression of transmembrane 
ATP-binding cassette molecules (upper graph). These cells do not 
exclude Hoechst in presence of verapamil, an ATP-binding cas-
sette protein inhibitor (lower graph).  b  Tumorosphere technique 
in MCF7 cell line. Only stem cells are able to survive and prolifer-
ate in nonadherent and serum-free culture conditions. Stem cells 
from tumorospheres are enriched in stem and progenitor cells.

 c  Immunosorting on CD44 +  CD24 –/low  lin –  phenotype. CSC are 
included in the rectangle.  d  ALDEFLUOR assay on a breast tu-
mor. Stem cells need ALDH activity to initiate differentiation. 
The ALDEFLUOR technique allows to sort cells with high ALDH 
enzymatic activity adding a substrate of this enzyme (BAAA), 
metabolized in a green fluorescent product in ALDH1-positive 
cells (rectangle, upper graph). These cells do not metabolize the 
substrate in the presence of DEAB, an inhibitor of ALDH (lower 
graph).   
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the oxidation of intracellular aldehydes, which may have 
a role in early differentiation of stem cells through its role 
in oxidizing retinol to retinoic acid  [48, 49] . This ap-
proach is based on conserved stem and progenitor cell 
functions that may also be inherited by the malignant 
stem cell compartment, across multiple histologic sub-
types of cancer from the same tissue of origin.

  Cells that have high ALDH activity have been associ-
ated with several types of murine and human stem hema-
topoietic cells as well as neural stem and progenitor cells 
 [50–54] . ALDH activity, detected by the ALDEFLUOR 
assay, may provide a common marker for both normal 
and malignant stem and progenitor cells. It was success-
fully used to isolate stem cells from leukemia and multi-
ple myeloma  [54] .

  Our recent study demonstrated that ALDEFLUOR-
positive cells isolated from both normal and tumoral hu-
man breast have phenotypic and functional characteris-
tics of mammary stem cells. Furthermore, the ALDE-
FLUOR-positive population isolated from human breast 
tumors contains CSC as demonstrated by the ability of 
these cells, but not ALDEFLUOR-negative cells, to gener-
ate tumors in NOD/SCID mice. Serial passages of ALDE-
FLUOR-positive cells generate tumors recapitulating the 
phenotypical diversity of the initial tumor. In situ stain-
ing in formalin-fixed, paraffin-embedded specimens 
identified both normal and malignant human mammary 
stem cells and the analysis of ALDH1 expression in 577 
human breast carcinomas from 2 different patient popu-
lations showed that the expression of this stem/progeni-
tor cell marker is a powerful predictor of poor clinical 
outcome  [47] .

  Thus, different methods have been used to isolate and 
characterize breast CSC. Some are promising, but further 
validations with combination of 2 or more methods will 
be necessary to improve our knowledge of the cells that 
drive tumor growth and evolution.

  Therapeutic Implications on Breast Cancer 

Management 

 Most current therapies in breast cancer (surgery, vari-
ous types of chemotherapy, hormonotherapy, radiother-
apy) have shown their efficiency but also their limits. 
Therapeutic strategies are well validated for breast cancer 
management. However, therapeutic resistance, underly-
ing recurrence and the lack of curative treatment in met-
astatic disease, raises the question if current therapies 
target the right cells.

  Intrinsic Resistance of Stem Cells 
 CSC are likely to share many of the properties of nor-

mal stem cells, including relative quiescence, resistance 
to drugs and toxins through the expression of several 
ABC transporters, active DNA repair capacity and resis-
tance to apoptosis. Therefore, tumors might have a built-
in population of drug-resistant pluripotent cells that can 
survive chemotherapy and repopulate the tumor. Stem 
cells are different from more mature differentiated cells 
in that they divide infrequently. Thus, antimitotic che-
motherapies are less effective in stem cells than in the 
cells of the bulk of the tumor  [55] .

  One particularly intriguing property of stem cells is 
that they express high levels of ABC drug transporters. 
For example, they express high levels of  ABCG2,  whereas 
the gene is turned off in most committed progenitors. 
The 2 ABC transporter-encoding genes that have been 
studied most extensively in stem cells are  ABCB1 , which 
encodes P-glycoprotein, and  ABCG2 . Along with  ABCC1 , 
they represent the 3 principal multidrug resistance genes 
that have been identified in tumor cells  [56] .

  As mentioned above, side population identification is 
based on the activity of the ABC transporter ABCG2/
BCRP1. Drugs that can specifically inhibit this mecha-
nism, such as P-glycoprotein inhibitors, have been tested 
in clinical trials, but despite some promising results, P-
glycoprotein inhibitors have not been successful in breast 
cancer treatment. The drugs are also active on normal 
stem cells and the resultant toxicity is high. Polymor-
phisms in the  ABCG2  gene affect the pharmacokinetics 
of substrate drugs and make these drugs difficult to man-
age  [57] .

  Stem cells appear to be resistant to radiotherapy. In 
gliomas, the fraction of tumor cells expressing CD133 
(Prominin-1), a marker for both neural stem cells and 
brain CSC, is enriched after radiation. Tumor stem cells 
represent the cellular population that confers glioma ra-
dioresistance and could be the source of tumor recur-
rence after radiation. The mechanisms underlying tumor 
radioresistance have been described. CSC could contrib-
ute to glioma radioresistance through preferential activa-
tion of the DNA damage checkpoint response and in-
crease in DNA repair capacity. The mechanism of resis-
tance involves the cell cycle-regulating proteins CHEK1 
and CHEK2. Targeting DNA damage checkpoint re-
sponse in CSC may overcome this radioresistance and 
provide a therapeutic model for malignant brain cancers 
 [58, 59] .

  In the breast cancer cell line MCF7, the CSC-like pop-
ulation bearing the CD44 +  CD24 –/low  phenotype shows 

D
ow

nloaded from
 http://w

w
w

.karger.com
/pat/article-pdf/75/2/75/3400891/000123845.pdf by guest on 25 April 2024



 Charafe-Jauffret   /Monville   /Ginestier   /
Dontu   /Birnbaum   /Wicha   

Pathobiology 2008;75:75–8480

relative radioresistance. The size of this population in-
creases after short courses of fractionated irradiation. 
These findings offer a possible mechanism for the accel-
erated repopulation of tumor cells observed during gaps 
in radiotherapy  [10] . Details of radiobiology of stem-like 
cells in their native environment within tumors in vivo 
would confer considerable significance to these find-
ings.

  Specific Pathways in Stem Cells 
 According to the CSC hypothesis, tumors are driven 

by cellular components that display stem cell properties. 
In fact, when CSC divide, one daughter is an exact copy 
of the original and retains the ability to divide and initi-
ate additional tumors, whereas the other daughter cell 
differentiates to produce nontumorigenic cells. This 
asymmetric division is controlled by various pathways 
that govern stem cell self-renewal and differentiation and 
control the pool of stem cells.

  The Hedgehog (HH) pathway is one of the main path-
ways that control stem cell fate, self-renewal and mainte-
nance. Inhibition of HH signaling with cyclopamine, a 
specific inhibitor, or through lentiviral-mediated silenc-
ing demonstrated that the tumorigenicity of human glio-
mas in mice requires an active HH pathway. HH signal-
ing is essential in controlling the behavior of human gli-
oma CSC and represents a new therapeutic target  [60] .

  The HH pathway is necessary for many developmental 
processes, including the formation of several epidermal 
appendages. In the mammary gland, strict regulation of 
the HH pathway is required for normal development. Al-
terations in HH signaling result in defects in both the 
embryonic and postnatal mammary gland. Activation of 
HH signaling either by mutation or abnormal expression 
of pathway members can lead to the development and/or 
progression of cancers in multiple organs  [61] .

  The role of the HH pathway in the stem cells of the 
normal and tumoral breast has been documented by our 
group. Our studies support a CSC model in which the 
HH pathway and the polycomb protein BMI1 play im-
portant roles in regulating self-renewal of normal and tu-
morigenic human mammary stem cells  [62] .

  HH pathway components PTCH1, GLI1 and GLI2 are 
highly expressed in normal human mammary stem/pro-
genitor cells cultured as mammospheres, but are down-
regulated when cells differentiate. Activation of HH sig-
naling increases the number of mammosphere-initiating 
cells and mammosphere size, whereas inhibition of the 
pathway results in a reduction of these parameters. These 
effects are mediated by BMI1. Overexpression of GLI2 in 

mammosphere-initiating cells results in the production 
of ductal hyperplasia. Modulation of BMI1 expression in 
mammosphere-initiating cells alters the generation of 
mammary outgrowths in vivo in a humanized NOD/
SCID mouse model. Furthermore, we showed that the 
HH signaling pathway is activated in human breast CSC 
defined as CD44 +  CD24 –/low  lin –  cells. All these data 
highlight potential of developing a novel anticancer ther-
apy based on blocking the HH pathway.

  NOTCH Pathway 

 A role for NOTCH signaling in human breast cancer 
has been suggested by both the development of adenocar-
cinomas in the murine mammary gland following con-
stitutive pathway activation and the loss of NUMB ex-
pression, a negative regulator of the NOTCH pathway, in 
a large proportion of breast carcinomas. The accumula-
tion of the intracellular domain of NOTCH1 and hence 
increased NOTCH signaling in a wide variety of human 
breast carcinomas was also documented  [63] . NOTCH1 
and NOTCH4 are involved in normal development of the 
mammary gland, and mutated forms of these genes are 
associated with the development of mouse mammary tu-
mors. We demonstrated that induction of NOTCH sig-
naling promotes self-renewal of normal human mamma-
ry stem cells. We observed a 10-fold increase in secondary 
mammosphere formation after treatment with a synthet-
ic peptide, DSL (Delta/serrate/Lag-2), which can activate 
the NOTCH pathway. Activation of this pathway also in-
creased branching morphogenesis in three-dimensional 
Matrigel culture. These effects were blocked by an anti-
NOTCH antibody or a  � -secretase inhibitor, suggesting 
a specific requirement of NOTCH in these signaling 
events  [64] . In medulloblastomas and acute T cell lym-
phoid leukemia, inhibitors of the  � -secretase complex de-
plete stem cells and slow the growth of NOTCH-depen-
dent tumors  [65, 66] . The mTOR pathway is one of the 
main downstream pathways that transmit prooncogenic 
signals of the NOTCH pathway. Simultaneous treatment 
with the mTOR inhibitor rapamycin and  � -secretase in-
hibitor in a highly synergistic manner suppressed acute 
T cell lymphoid leukemia cell growth, suggesting this 
would be a successful drug combination for treating this 
aggressive malignancy  [67] .

  NOTCH pathway deregulation has been implicated in 
a preinvasive breast lesion, ductal carcinoma in situ 
(DCIS). Aberrant activation of NOTCH signaling is prob-
ably an early event in breast cancer. High expression of 
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NOTCH1 intracellular domain (NICD) in DCIS also pre-
dicted a reduced time to recurrence, 5 years after surgery. 
A  � -secretase inhibitor and a NOTCH4-neutralizing an-
tibody reduced DCIS mammosphere formation, indicat-
ing that NOTCH signaling and other stem cell self-re-
newal pathways may represent novel therapeutic targets 
to prevent recurrence of preinvasive and invasive breast 
cancer  [68, 69] .

  Other Pathways 

 The pathways that regulate self-renewal and cell fate 
CSC begin to be elucidated. In addition to pathways such 
as WNT, NOTCH and HH, known to regulate self-re-
newal of normal stem cells, tumor suppressor genes such 
as PTEN and TP53 (tumor protein p53) have also been 
implicated in the regulation of CSC self-renewal. It is be-
lieved that these pathways are deregulated in CSC, lead-
ing to uncontrolled self-renewal of these cells, which in 
turn generate tumors that are resistant to conventional 
therapies  [70] .

  Many different pathways could be implicated in the 
determination of breast stem cell fate. These pathways 
may be deregulated in cancer and could hence represent 
potential pathways to target when developing new thera-
peutic strategies.

  Molecules that can interfere with these pathways can 
be tested first in vitro on the CSC component within cell 
lines, and subsequently validated in in vivo animal mod-
els bearing xenografted cell lines or patient tumors, or in 
transgenic mice. Despite the caveats represented by a 
change in the functional properties of CSC in the animal 
host and the changes in the niche (tumoral stroma, hor-
monal influence), the xenograft model of patient samples 
is the experimental system closest to the tumor in human 
patients  [71] .

  Stem Cell and the Niche 

 The stem cell niche is the microenvironment sur-
rounding stem cells that maintain their stemness and 
prevents them from differentiating. It comprises stem 
cells, signaling surrounding cells and characteristic ex-
tracellular matrix. The pivotal role of the mammary 
gland stem cell niche is obvious through the outgrowth 
and modifications of mammary gland upon hormonal 
stimulations  [72] .

  The most impressive evidence of the niche dominance 
was provided by the recent demonstration that it is able 
to redirect spermatogenic fate. The reprogrammation of 
adult testicular cells into mammary progenitor cells was 
obtained following injection of a single-cell suspension of 
cells from adult seminiferous tubules mixed with mam-
mary epithelial cells, into the cleared mammary fat pad 
of mice. The reprogrammed testicular cells were able to 
reconstitute mammary progenitors upon serial trans-
plantation  [73] . These results provide evidence for the as-
cendancy of the tissue microenvironment over the in-
trinsic nature of cells from an alternative adult tissue. 
Growth of normal human breast stem cells in a host ani-
mal was obtained only in the cleared and humanized fat 
pad of NOD/SCID mice, indicating that the presence of 
the human stroma is critical  [71] .

  Another strong demonstration of how tumor micro-
environment in the breast facilitates metastatic spread by 
eliciting reversible changes in the phenotype of cancer 
cells comes from Weinberg and colleagues  [74] . They 
showed that bone marrow-derived human mesenchymal 
stem cells mixed with otherwise weakly metastatic hu-
man breast carcinoma cells cause the cancer cells to in-
crease their metastatic potency. The breast cancer cells 
stimulate de novo secretion of the chemokine CCL5 from 
mesenchymal stem cells, which then acts in a paracrine 
fashion on the cancer cells to enhance their motility, in-
vasion and metastatic potential. This metastatic ability is 
reversible and depends on CCL5 signaling through the 
chemokine receptor CCR5  [74] . This demonstrates that 
the niche or microenvironment where stem cells grow 
can determine stem cell fate and also modify their bio-
logical properties, such as invasion and metastatic poten-
tial.

  A Stem of Caution 

 Despite important advances in the CSC field, some 
skepticism persists. One of the main criticisms is that vir-
tually all the work has involved transplanting human 
cancer cells into immunodeficient mice. This has raised 
concerns that the experiments do not accurately reflect 
what happens during cancer initiation and progression in 
human patients. The idea that only rare CSC can initiate 
tumor formation has recently been challenged  [75] . In 
this study, as few as 10 leukemic cells from mice geneti-
cally engineered to develop leukemia were injected into 
genetically compatible healthy animals. As all recipient 
mice developed leukemia, the authors suggested it could 
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