Escalation of drug use, a hallmark of drug dependence, has traditionally been interpreted as reflecting the development of tolerance to the drug’s effects. However, on the basis of animal behavioral data, several groups have recently proposed alternative explanations, i.e. that such an escalation of drug use might not be based on (1) tolerance, but rather be indicative of (2) sensitization to the drug’s reinforcing effect, (3) reward allostasis, (4) an increase in the incentive salience of drug-associated stimuli, (5) an increase in the reinforcing strength of the drug reinforcer relative to alternative reinforcers, or (6) habit formation. From the pharmacological perspective, models 1–3 allow predictions about the change in the shape of drug dose-effect curves that are based on mathematically defined models governing receptor-ligand interaction and signal transduction. These predictions are tested in the present review, which also describes the other currently championed models for drug use escalation and other components of apparent ‘reinforcement’ (in its original meaning, like ‘tolerance’ or ‘sensitization’, a purely descriptive term). It evaluates the animal experimental approaches employed to support or prove the existence of each of the models and reinforcement components, and recapitulates the clinical evidence, which strongly suggests that escalation of drug use is predominantly based on an increase in the frequency of intoxication events rather than an increase in the dose taken at each intoxication event. Two apparent discrepancies in animal experiments are that (a) sensitization to overall reinforcement has been found more often for psychostimulants than for opioids, and that (b) tolerance to the reinforcing and other effects has been observed more often for opioids than for cocaine. These discrepancies are resolved by the finding that cocaine levels seem to be more tightly regulated at submaximum reinforcing levels than opioid levels are. Consequently, animals self-administering opioids are more likely to expose themselves to higher above-threshold doses than animals self-administering psychostimulants, rendering the development of tolerance to opioids more likely than tolerance to psychostimulants. The review concludes by making suggestions on how to improve the current behavioral experimental approaches.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.