Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Infections with Human Rhinovirus Induce the Formation of Distinct Functional Membrane Domains

Dreschers S. · Franz P.1 · Dumitru C.A.1 · Wilker B.1 · Jahnke K.1 · Gulbins E.1

Author affiliations

Department of Molecular Biology and1Department of Otorhinolaryngology, University of Duisburg-Essen

Corresponding Author

Dr. Stephan Dreschers

Dept. of Molecular Biology, University of Duisburg-Essen

Hufelandstrasse 55, 45122 Essen (Germany)

Tel. +49-201-723-3418, Fax: +49-2001-723-5974

E-Mail stephan.dreschers@uni-essen.de

Related Articles for ""

Cell Physiol Biochem 2007;20:241–254

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


The plasma membrane contains distinct domains that are characterized by a high concentration of sphingolipids and cholesterol. These membrane microdomains also referred to as rafts, seem to be intimately involved in transmembranous signaling and often initiate interactions of pathogens and the host cell membranes. Here, we investigated the further reorganization of membrane rafts in cultured epithelial cells and ex vivo isolated nasal cells after infection with rhinoviruses. We demonstrate the formation of ceramide-enriched membrane platforms and large glycosphingolipid-enriched membrane domains and the co-localization of fluorochrome-labeled rhinoviruses with these membrane domains during attachment and uptake of human rhinovirus. Destruction of glycosphingolipid-enriched membrane domains blocked infection of human cells with rhinovirus. Furthermore, our studies indicate that the activation of the acid sphingomyelinase (ASM) is intrigued in the formation of ceramide- or GM1- enriched membrane platforms. Inhibition of the ASM reduces the number of ceramide-enriched platforms and glycosphingolipid-enriched membrane domains. These data reveal a critical role of the ASM for the formation of membrane platforms and infection of human cells with rhinoviruses.

© 2007 S. Karger AG, Basel

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: May 22, 2007
Issue release date: January 2006

Number of Print Pages: 14
Number of Figures: 0
Number of Tables: 0

ISSN: 1015-8987 (Print)
eISSN: 1421-9778 (Online)

For additional information: http://www.karger.com/CPB

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.