Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Beer and Bread to Brains and Beyond: Can Yeast Cells Teach Us about Neurodegenerative Disease?

Gitler A.D.

Author affiliations

Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA

Corresponding Author

Aaron D. Gitler

Department of Cell and Developmental Biology

University of Pennsylvania School of Medicine

Philadelphia, PA 19104 (USA)

Tel. +1 215 573 8251, Fax +1 215 898 9871, E-Mail gitler@mail.med.upenn.edu

Related Articles for ""

Neurosignals 2008;16:52–62

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker’s yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson’s, Huntington’s, Alzheimer’s and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson’s disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.

© 2008 S. Karger AG, Basel

Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: December 05, 2007
Issue release date: December 2007

Number of Print Pages: 11
Number of Figures: 3
Number of Tables: 0

ISSN: 1424-862X (Print)
eISSN: 1424-8638 (Online)

For additional information: http://www.karger.com/NSG

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.