Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Free Access

Biodegradation of Organic Pollutants by Halophilic Bacteria and Archaea

Le Borgne S.a · Paniagua D.b · Vazquez-Duhalt R.b

Author affiliations

aUAM-Cuajimalpa, México, D.F., and bInstituto de Biotecnología, Universidad Nacional Autónoma de México UNAM, Cuernavaca, Morelos, Mexico

Corresponding Author

Sylvie Le Borgne

UAM-Cuajimalpa

Av. Pedro A. de los Santos 84

11850 México, D.F. (Mexico)

Tel. +52 55 5804 64 08, Fax +52 55 5804 64 07, E-Mail sylvielb@correo.cua.mx

Related Articles for ""

J Mol Microbiol Biotechnol 2008;15:74–92

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Abstract

Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.

© 2008 S. Karger AG, Basel


References

  1. Abdelkafi S, Chambkha M, Casalot L, Sayadi S, Labat M: Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 2005;252:79–84.
  2. Abdelkafi S, Sayadi S, Ben Ali Gam Z, Casalot L, Labat M: Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 2006;262:115–120.
  3. Abed RMM, Al-Thukair A, de Beer D: Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Lett 2006;57:290–301.
  4. Alva V, Peyton BM: Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 2003;37:4397–4402.
  5. Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM: Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 2007;98:2082–2088.
  6. Atlas RM, Bartha R: Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorous. Biotechnol Bioeng 1972;14:309–317.
  7. Azachi M, Henis Y, Shapira R, Oren A: The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. MAC. Microbiology 1996;142:1249–1254.
  8. Bertrand JC, Almallah M, Acquaviva M, Mille G: Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 1990;11:260–263.
  9. Brito EM, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R: Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 2006;157:752–762.
  10. Bromley-Challenor KCA, Caggiano N, Knapps JS: Bacterial growth on N,N-dimethylformamide: implications for the treatment of industrial wastewaters. J Ind Microbiol Biotechnol 2000;25:8–16.
  11. Cohen Y: Bioremediation of oil by marine microbial mats. Int Microbiol 2002;5:189–193.
  12. Colwell RR: Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol 1977;5:423–445.
  13. Cuadros-Orellana S, Pohlschröder M, Durrant LR: Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeter Biodegradation 2006;57:151–154.
  14. DasSarma S, Arora P: Halophiles; in Encyclopedia of Life Sciences. London, Nature Publishing Group, 2002, vol 8, pp 458–466.
  15. DeFrank JJ, Beaudry WT, Cheng TC, Harvey SP, Stroup AN, Szafraniec LL: Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem Biol Interact 1993;87:141–148.
  16. DeFrank JJ, Cheng TC: Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate J Bacteriol 1991;173:1938–1943.
  17. Del Moral A, Prado B, Quesada E, García T, Ferrer R, Ramos-Cormenzana A: Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. J Gen Microbiol 1988;134:733–741.
  18. Deppe U, Richnow HH, Michaelis W, Antranikian G: Degradation of crude oil by an arctic microbial consortium. Extremophiles 2005;9:461–470.
  19. Díaz MP, Boyd KG, Grigson SJW, Burgess JG: Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 2002;79:145–153.
  20. Díaz MP, Grigson SJW, Peppiatt CJ, Burgess JG: Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2000;2:522–532.
  21. Eaton RW, Chapman PJ: Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol 1992;174:7542–7554.
  22. Emerson D, Breznak JA: The response of microbial populations from oil-brine contaminated soil to gradient of NaCl and sodium p-toluate in a diffusion gradient chamber. FEMS Microbiol Ecol 1997;23:285–300.
  23. Emerson D, Chauchan S, Oriel P, Breznak JA: Haloferax sp. D1227, a halophilic archaeon capable of growth on aromatic compounds. Arch Microbiol 1994;161:445–452.
  24. Fairley DJ, Boyd DR, Sharma ND, Allen CC, Morgan P, Larkin MJ: Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Environ Microbiol 2002;68:6246–6255.
  25. Fairley DJ, Wang G, Rensing C, Pepper IL, Larkin MJ: Expression of gentisate 1,2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera. Appl Microbiol Biotechnol 2006;73:691–695.
  26. Field JA, Stams AJ, Kato M, Schraa G: Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 1995;67:47–77.
  27. Fu W, Oriel P: Gentisate 1,2-dioxygenase from Haloferax sp. D1227. Extremophiles 1998;2:439–436.
  28. Fu W, Oriel P: Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles 1999;3:45–53.
  29. Fulthorpe RR, McGowan C, Maltseva OV, Holben WE, Tiedje JM: 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microbiol 1995;61:3274–3281.
  30. Fuse H: Oxidation of organic compounds by bacteria. Patent JP10128385. 1998.
  31. García MT, Gallego V, Ventosa A, Mellado E: Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Sys Evol Microbiol 2005b;55:1789–1795.
  32. Garcia MT, Mellado E, Ostos JC, Ventosa A: Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004;54:1723–1728.
  33. García MT, Ventosa A, Mellado E: Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 2005a;54:97–109.
  34. García MT, Ventosa A, Ruiz-Berraquero F, Kocur M: Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 1987;37:352–360.
    External Resources
  35. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC: Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576.
  36. Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y, Wright JP, Nicolau DV, Mikhailov VV, Christen R: Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 2003;53:2073–2078.
  37. Grant WD, Gemmel RT, McGenity TJ: Halophiles; in Horikoshi K, Grant W (eds): Extremophiles: Microbial Life in Extreme Environments. New York, Wiley-Liss, 1998, pp 93–132.
  38. Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJ: Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 2006;56:523–527.
  39. Grötzschel S, Köster J, Abed RMM, Beer D: Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Biodegradation 2002;13:273–283.
  40. Gu J, Cai H, Yu SL, Qu R, Yin B, Guo YF, Zhao JY, Wu XL: Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 2007;57:250–254.
  41. Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS: A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 2008;19:15–19.
  42. Harayama S, Kasai Y, Hara A: Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 2004;15:205–214.
  43. Harayama S, Kishira H, Kasai Y, Shutsubo K: Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1999;1:63–70.
  44. Hayes VE, Ternan NG, McMullan G: Organophosphonate metabolism by a moderately halophilic bacterial isolate. FEMS Microbiol Lett 2000;186:171–175.
  45. Head IM, Jones DM, Roling WF: Marine microorganisms make a meal of oil. Nat Rev Microbiol 2006;4:173–182.
  46. Head IM, Swannell RP: Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 1999;10:234–239.
  47. Hebert AM, Vreeland RH: Phenotypic comparison of halotolerant bacteria: Halomonas halodurans sp. nov., nom. rev., comb. nov. Int J Syst Bacteriol 1987;37:347–350.
  48. Hedlund BP, Geiselbrecht AD, Staley JT: Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol Lett 2001;201:47–51.
  49. Hinteregger C, Streischsberg F: Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 1997;19:1099–1102.
  50. Huu NB, Denner EB, Ha DT, Wanner G, Stan-Lotter H: Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 1999;49:367–375.
  51. Ivanova EP, Kurilenko VV, Kurilenko AV, Gorshkova NM, Shubin FN, Nicolau DV, Chelomin VP: Tolerance to cadmium of free-living and associated with marine animals and eelgrass marine gamma-proteobacteria. Curr Microbiol 2002;44:357–362.
  52. Jiang HL, Tay ST, Maszenan AM, Tay JH: Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol Ecol 2006;57:182–191.
  53. Jones BE, Grant WD, Duckworth AW, Owenson GG: Microbial diversity of soda lakes. Extremophiles 1998;2:191–200.
  54. Kamekura M: Diversity of extremely halophilic bacteria. Extremophiles 1998;2:289–295.
  55. Kargi F, Dincer AR: Biological treatment of saline wastewater by fed-batch operation. J Chem Tech Biotechnol 1997;69:167–172.
  56. Keenan SL, Chapman PJ: Carboxy-migration facilitated by bacterial hydroxylation of 4-hydroxybenzoate. J Chem Soc Chem Commun 1978;17:731–732.
    External Resources
  57. Kerr RP, Capone, DG: The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Marine Environ Res 1988;26:181–198.
  58. Khmelina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA: Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 1997;35:257–261.
  59. Kim SG, Bae HS, Oh HM, Lee ST: Isolation and characterization of novel halotolerant and/or halophilic denitrifying bacteria with versatile metabolic pathways for the degradation of trimethylamine. FEMS Microbiol Lett 2003;225:263–269.
  60. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW, Stackebrandt E, Go SJ: Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006;56:2653–2656.
  61. Kleinsteuber S, Muller RH, Babel W: Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 2001;5:375–384.
  62. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S: Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 2006;72:3531–3542.
  63. Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS: Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 1992;60:596–601.
    External Resources
  64. Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN: Streptomyces albiaxialis sp. Nov. A new petroleum hydrocarbon degrading species of thermo and halotolerant Streptomyces. Microbiology 1992;61:62–67.
    External Resources
  65. Lefebvre O: Application des micro-organismes halophiles au traitement des effluents industriels hypersalins; PhD thesis. Ecole Nationale Supérieure Agronomique de Montpellier, 2004.
  66. Lefebvre O, Moletta R: Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 2006;40:3671–3682.
  67. Litchfield CD: Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 1998;33:813–819.
  68. Maltseva O, McGowan C, Fulthorpe R, Oriel P: Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology 1996;142:1115–1122.
  69. Maltseva O, Oriel P: Monitoring of an alkaline 2,4,6-trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism, haloalkaliphilic Nocardioides sp. strain M6. Appl Environ Microbiol 1997;63:4145–4149.
  70. Margesin R, Schinner F: Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 2001a;56:650–663.
  71. Margesin R, Schinner R: Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001b;5:73–83.
  72. Marhuenda-Egea FC, Piera-Velazquez S, Cadenas C, Cadenas E: Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments. Biotechnol Bioeng 2002;78:497–502.
  73. Marquez MC, Ventosa A: Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 2005;55:1349–1351.
  74. Martinez-Checa F, Toledo FL, Vichez R, Quesada E, Calvo C: Yield production, chemical composition, and functional properties of emulsifie H28 synthesized by Halomonas eurialina strain H-28 in media containing various hydrocarbons. 2002;58:358–363.
  75. Maskow T, Kleinsteuber S; Carbon and energy fluxes during haloadaptation of Halomonas sp. EF11 growing on phenol. Extremophiles 2004;8:133–141.
  76. Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP: Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 1988;38:139–142.
  77. Nicholson CA, Fathepure BZ: Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 2004;70:1222–1225.
  78. Nicholson CA, Fathepure BZ: Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 2005;245:257–262.
  79. Nordlund I, Powlowski J, Shingler V: Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 1990;172:6826–6833.
  80. Oesterhelt D, Patzelt H, Kesler B: Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE19639894. 1998.
  81. Oren A: Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol. 1986;32:4–9.
  82. Oren A: Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 1999;63:334–348.
  83. Oren A: Halophilic Microorganisms and Their Environments. Amsterdam, Kluwer Academic Publishers, 2002a.
  84. Oren A: Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 2002b;28:56–63.
  85. Oren A, Gurevich P, Azachi M, Hents Y: Microbial degradation of pollutants at high salt concentrations. Biodegradation 1992;3:387–398.
  86. Oriel P, Chauhan S, Maltseva O, Fu W: Degradation of aromatics and haloaromatics by halophilic bacteria, in Horikoshi K, Fukuda M, Kudo T (eds): Microbial Diversity and Genetics of Biodegradation. Tokyo, Japan Scientific Societies Press, 1997, pp 123–130.
  87. Perkins EJ, Gordon MP, Caceres O, Lurquin PF: Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 1990;172:2351–2359.
  88. Pernetti M, Di Palma L: Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environ Technol 2005;26:695–703.
  89. Piedad Diaz M, Grigson SJ, Peppiatt CJ, Burgess JG: Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2000;2:522–532.
  90. Pieper D, Reineke W: Engineering bacteria for bioremediation. Curr Opin Biotechnol 2000;11:262–270.
  91. Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM: Isolation of haloarchaea that grow at low salinities. Environ Microbiol 2004;6:591–595.
  92. Razo-Flores E, Donlon B, Lettinga G, Field JA: Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiol Rev 1997;20:525–538.
  93. Riis V, Kleinsteuber S, Babel W: Influence of high salinities on the degradation of diesel fuel by bacteria consortia. Can J Microbiol 2003;49:713–721.
  94. Robertson DE, Lai MC, Gunsalus RP, Roberts MF: Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus strain FDF1. Appl Environ Microbiol 1992;58:2438–2443.
  95. Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E: Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 2005;55:143–148.
  96. Rontani JF, Gilewicz MJ, Michotey VD, Zheng TL, Bonin PC, Bertrand JC: Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments. Appl Environ Microbiol 1997;63:636–643.
  97. Rontani JF, Mouzdahir A, Michotey V, Caumette P, Bonin P: Production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. Appl Environ Microbiol 2003;69:4167–4176.
  98. Rosenberg A: Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch Microbiol 1983;136:117–123.
    External Resources
  99. Rothschild LJ, Mancinelli RL: Life in extreme environments. Nature 2001;409:1092–1101.
  100. Sette LD, Simioni KC, Vasconcellos SP, Dussan LJ, Neto EV, Oliveira VM: Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie Van Leeuwenhoek 2007;91:253–266.
  101. Shieh WY, Jean WD, Lin YT, Tseng M: Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 2003;49:244–252.
  102. Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D: Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 2005;55:1453–1456.
  103. Singh1 BK, Walker A: Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 2006;30:428–471.
  104. Sørensen SR, Arbeli Z, Aamand J, Ronen Z: Metabolism of diphenylurea by a Marinobacter sp. isolated from a contaminated ephemeral stream bed in the Negev Desert. FEMS Microbiol Lett 2002;213:199–204.
  105. Sørensen SR, Bending GD, Jacobsen CS, Walker A, Aamand J: Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol Ecol 2003;45:1–11.
  106. Sorokin DY, Jones BE, Kuenen JG: An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 2000;4:145–155.
  107. Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG: Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 2004;150:2435–2442.
  108. Sorokin DY, Tourova TP, Bezsoudnova EY, Pol A, Muyzer G: Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Arch Microbiol 2007b;187:441–450.
  109. Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG: Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 2001;67:528–538.
  110. Sorokin DY, Tourova TP, Lysenko AM, Mityushina LL, Kuenen JG: Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. Int J Syst Evol Microbiol 2002;52:657–664.
  111. Sorokin DY, van Pelt S, Tourova TP, Takaichi S, Muyzer G: Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. nov. Microbiology 2007a;153:1157–1164.
  112. Speight JG: The Chemistry and Technology of Petroleum, ed 3. New York, Marcel Dekker, 1998, pp 1–202.
  113. Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH, Horikoshi K Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 2005;9:17–27
  114. van den Bosch PL, van Beusekom OC, Buisman CJ, Janssen AJ: Sulfide oxidation under halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 2007;97:1053–1063.
  115. Ventosa A, Carmen Marquez M, Garabito MJ, Arahal DR: Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 1998a;2:297–304.
  116. Ventosa A, Nieto JJ, Oren A: Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998b;62:504–544.
  117. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A: Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol 1982;128:1959–1968.
  118. Ward DM, and Brock TD: Hydrocarbon biodegradation in hypersaline enviroments. Appl Environ Microbiol 1978;35:353–359.
  119. Woolard CR, Irvine RL: Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Water Environ Res 1994;66:230–235.
  120. Woolard CR, Irvine RL: Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 1995;29:1159–1168.
  121. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giluliano L: Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 2005;7:1426–1441.
  122. Yang L, Lai C, Shieh WK: Biodegradation of dispersed diesel fuel under high salinity conditions. Wat Res 2000;34:3303–3314.
  123. Yoon JH, Shin DY, Kim IG, Kang KH, Park YH: Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 2003;53:563–568.
  124. Yoon JH, Yeo SH, Kim IG, Oh TK: Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54:1799–1803.
  125. Zvyagintseva IS, Poglasova MN, Gotoeva MT, Belyaev SS: Effect of the medium salinity on oil degradation by nocardioform bacteria. Microbiology 2001;70:652–656.

Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: July 28, 2008
Issue release date: August 2008

Number of Print Pages: 19
Number of Figures: 7
Number of Tables: 1

ISSN: 1464-1801 (Print)
eISSN: 1660-2412 (Online)

For additional information: https://www.karger.com/MMB


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.