The uterine tube is an essential conduit for the gametes and zygote during reproduction. The necessary bidirectional conveyance occurs through peristalsis and ciliary activity, but unlike in respiratory tract, little is known about mucociliary transport in the uterine tube, and the direction of transport and the alignment of oviductal cilia have not been conclusively characterized. This study aimed to determine the uniformity in the axonemal orientation of motile cilia in the bovine uterine tube, to identify the direction of mucociliary transport and to relate the presumptive beating plane and the mucociliary transport direction to the long axis of the uterine tube. The angular spread of oviductal motile cilia was determined by electron microscopy, and by maintaining the accurate alignment of the samples throughout the processing steps, axonemal orientation was determined relative to the long axis of the oviduct. The direction of the effective mucociliary transport was determined by the analysis of video microscopic data recorded on explants. Vector-based analysis of electron micrographs yielded the mean angle of deviation between the ‘effective ciliary stroke', as derived from axonemal orientation, and the tubal longitudinal axis pointing towards the uterus to be 0.8°, with a standard deviation of 35.2°. The corresponding angular deviation of the short-wave propagation was -6.8° (SD 34.6°). These results show that oviductal motile cilia are rigorously aligned, that the beating plane of the cilia is parallel to the long axis of the uterine tube and that the ‘effective stroke' and mucociliary transport are directed towards the uterus.

1.
Abe, H., T. Oikawa (1993) Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec 235: 399-410.
2.
Abe, H., M. Onodera, S. Sugawara (1993) Scanning electron microscopy of goat oviductal epithelial cells at the follicular and luteal phases of the oestrus cycle. J Anat 183: 415-421.
3.
Afzelius, B.A. (1976) A human syndrome caused by immotile cilia. Science 193: 317-319.
4.
Afzelius, B.A. (1979) The immotile-cilia syndrome and other ciliary diseases. Int Rev Exp Pathol 19: 1-43.
5.
Afzelius, B.A. (1981) Genetical and ultrastructural aspects of the immotile-cilia syndrome. Am J Hum Genet 33: 852-864.
6.
Afzelius, B.A., R. Eliasson (1983) Male and female infertility problems in the immotile-cilia syndrome. Eur J Respir Dis (suppl) 127: 144-147.
7.
Biggart, E., K. Pritchard, R. Wilson, A. Bush (2001) Primary ciliary dyskinesia syndrome associated with abnormal ciliary orientation in infants. Eur Respir J 17: 444-448.
8.
Buchdahl, R.M., J. Reiser, D. Ingram, A. Rutman, P.J. Cole, J.O. Warner (1988) Ciliary abnormalities in respiratory disease. Arch Dis Child 63: 238-243.
9.
Burn, A. (2009) Functional imaging of mucociliary clearance. PhD thesis, Institute of Applied Physics, University of Bern.
10.
Chilvers, M.A., C. O'Callaghan (2000) Local mucociliary defence mechanisms. Paediatr Respir Rev 1: 27-34.
11.
Croxatto, H.B. (2002) Physiology of gamete and embryo transport through the Fallopian tube. Reprod Biomed Online 4: 160-169.
12.
Delaere, P.R., Z. Liu, G. Delanghe, K. Gyselen, M. Jorissen, L. Feenstra (1996) Mucociliary clearance following segmental tracheal reversal. Laryngoscope 106: 450-456.
13.
Derussi, A.A., R.W. de Souza, R. Volpato, C.R. Guaitolini, C.L. Ackermann, M.O. Taffarel, G.S. Cardoso, M. Dal-Pai-Silva, M.D. Lopes (2012) Progesterone (PR), oestrogen (ER-α and ER-β) and oxytocin (OTR) gene expression in the oviduct and uterus of pregnant and non-pregnant bitches. Reprod Domest Anim 47: 197-199.
14.
Gibbons, I.R. (1981) Cilia and flagella of eukaryotes. J Cell Biol 91: 107s-124s.
15.
Goodrich, L.V., D. Strutt (2011) Principles of planar polarity in animal development. Development 138: 1877-1892.
16.
Halbert, S.A., D.R. Becker, S.E. Szal (1989) Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod 40: 1131-1136.
17.
Halbert, S.A., P.Y. Tam, R.J. Blandau (1976) Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science 191: 1052-1053.
18.
Hayes, J.M., S.K. Kim, P.B. Abitua, T.J. Park, E.R. Herrington, A. Kitayama, M.W. Grow, N. Ueno, J.B. Wallingford (2007) Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev Biol 312: 115-130.
19.
de Iongh, R., J. Rutland (1989) Orientation of respiratory tract cilia in patients with primary ciliary dyskinesia, bronchiectasis, and in normal subjects. J Clin Pathol 42: 613-619.
20.
de Iongh, R.U., J. Rutland (1995) Ciliary defects in healthy subjects, bronchiectasis, and primary ciliary dyskinesia. Am J Respir Crit Care Med 151: 1559-1567.
21.
Joki, S., V. Saano (1994) Ciliary beat frequency at six levels of the respiratory tract in cow, dog, guinea-pig, pig, rabbit and rat. Clin Exp Pharmacol Physiol 21: 427-434.
22.
Jones, C., V.C. Roper, I. Foucher, D. Qian, B. Banizs, C. Petit, B.K. Yoder, P. Chen (2007) Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40: 69-77.
23.
Jorissen, M. (1998) Correlations among mucociliary transport, ciliary function, and ciliary structure. Am J Rhinol 12: 53-58.
24.
Jorissen, M., T. Willems (2004) The secondary nature of ciliary (dis)orientation in secondary and primary ciliary dyskinesia. Acta Otolaryngol 124: 527-531.
25.
Kenngott, R.A.-M., M. Vermehren, U. Sauer, K. Ebach, F. Sinowatz (2011) Cellular expression and localization of estrogen receptor α and progesterone receptor mRNA in the bovine oviduct combining laser-assisted microdissection, quantitative PCR, and in situ hybridization. J Histochem Cytochem 59: 312-327.
26.
Kim, K., B.B. Lake, T. Haremaki, D.C. Weinstein, S.Y. Sokol (2012) Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis. Dev Dyn 241: 1385-1395.
27.
Kim, S.K., A. Shindo, T.J. Park, E.C. Oh, S. Ghosh, R.S. Gray, R.A. Lewis, C.A. Johnson, T. Attie-Bittach, N. Katsanis, J.B. Wallingford (2010) Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329: 1337-1340.
28.
Kölle, S., S. Dubielzig, S. Reese, A. Wehrend, P. Konig, W. Kummer (2009) Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow. Biol Reprod 81: 267-274.
29.
Kunimoto, K., Y. Yamazaki, T. Nishida, K. Shinohara, H. Ishikawa, T. Hasegawa, T. Okanoue, H. Hamada, T. Noda, A. Tamura, S. Tsukita, S. Tsukita (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148: 189-200.
30.
Lyons, R.A., O. Djahanbakhch, T. Mahmood, E. Saridogan, S. Sattar, M.T. Sheaff, A.A. Naftalin, R. Chenoy (2002) Fallopian tube ciliary beat frequency in relation to the stage of menstrual cycle and anatomical site. Hum Reprod 17: 584-588.
31.
Lyons, R.A., E. Saridogan, O. Djahanbakhch (2006) The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 12: 363-372.
32.
Mantovani, G., M. Pifferi, G. Vozzi (2010) Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia. Eur Arch Otorhinolaryngol 267: 897-902.
33.
Monini, S., M.R. Torrisi, I. Eliseo, V. Visco, S. Raffa, G. Bandiera, C. Nardi, F. Ronchetti, M. Barbara (2005) Ultrastructural ciliary findings in nasal obstructive diseases. Rhinology 43: 251-256.
34.
Nishimura, A., K. Sakuma, C. Shimamoto, S. Ito, T. Nakano, E. Daikoku, M. Ohmichi, T. Ushiroyama, M. Ueki, H. Kuwabara, H. Mori, T. Nakahari (2010) Ciliary beat frequency controlled by oestradiol and progesterone during ovarian cycle in guinea-pig Fallopian tube. Exp. Physiol 95: 819-828.
35.
Noreikat, K., M. Wolff, W. Kummer, S. Kölle (2012) Ciliary activity in the oviduct of cycling, pregnant, and muscarinic receptor knockout mice. Biol. Reprod 86: 120.
36.
Odor, D.L., J.R. Augustine (1995) Morphological study of changes in the baboon oviductal epithelium during the menstrual cycle. Microsc Res Tech 32: 13-28.
37.
Plesec, T.P., A. Ruiz, J.T. McMahon, R.A. Prayson (2008) Ultrastructural abnormalities of respiratory cilia: a 25-year experience. Arch Pathol Lab Med 132: 1786-1791.
38.
Rautiainen, M.E. (1988) Orientation of human respiratory cilia. Eur Respir J 1: 257-261.
39.
Rautiainen, M., Y. Collan, J. Nuutinen (1986) A method for measuring the orientation (‘beat direction') of respiratory cilia. Arch Otorhinolaryngol 243: 265-268.
40.
Rautiainen, M., Y. Collan, J. Nuutinen, B.A. Afzelius (1990) Ciliary orientation in the ‘immotile cilia' syndrome. Eur Arch Otorhinolaryngol 247: 100-103.
41.
Rayner, C.F., A. Rutman, A. Dewar, P.J. Cole, R. Wilson (1995) Ciliary disorientation in patients with chronic upper respiratory tract inflammation. Am J Respir Crit Care Med 151: 800-804.
42.
Rayner, C.F., A. Rutman, A. Dewar, M.A. Greenstone, P.J. Cole, R. Wilson (1996) Ciliary disorientation alone as a cause of primary ciliary dyskinesia syndrome. Am J Respir Crit Care Med 153: 1123-1129.
43.
Rička, J. (2010) Zilien: Mannschaftsspiel mit Molekularmotoren. Selbstorganisierte Selbstreinigung von Atmungswegen. Physik in unserer Zeit 41: 74-80.
44.
Roomans, G.M., A. Ivanovs, E.B. Shebani, M. Johannesson (2006) Transmission electron microscopy in the diagnosis of primary ciliary dyskinesia. Ups J Med Sci 111: 155-168.
45.
Roperto, F., A. Brunetti, L. Saviano, P. Galati (1996) Morphologic alterations in the cilia of a cat. Vet Pathol 33: 460-462.
46.
Roperto, F., P. Galati, P. Maiolino, S. Papparella (1990) Atypical basal bodies in the oviductal mucosa (ampulla) of gilts with primary ciliary dyskinesia (PCD). J Submicrosc Cytol Pathol 22: 587-589.
47.
Roperto, F., P. Galati, S. Papparella, M. Campofreda, P. Rossacco (1991a) Atypical cilia in the oviductal epithelium of healthy prepubertal gilts. Am J Vet Res 52: 101-103.
48.
Roperto, F., P. Galati, A. Troncone, P. Rossacco, M. Campofreda (1991b) Primary ciliary dyskinesia in pigs. J Submicrosc Cytol Pathol 23: 233-236.
49.
Roperto, F., C. Mingozzi, P. Volpe, F. Bruno, P. Galati (1998) Atypical cilia in the oviductal epithelium of healthy dogs. J Submicrosc Cytol Pathol 30: 581-583.
50.
Roperto, F., G. de Vico, P. Maiolino, F.P. Marotta, B. Restucci, A. Tranquillo (1995) Atypical cilia in the oviductal epithelium of healthy cats. J Submicrosc Cytol Pathol 27: 267-270.
51.
Rutland, J., R.U. de Iongh (1990) Random ciliary orientation. A cause of respiratory tract disease. N Engl J Med 323: 1681-1684.
52.
Rutman, A., P. Cullinan, M. Woodhead, P.J. Cole, R. Wilson (1993) Ciliary disorientation: a possible variant of primary ciliary dyskinesia. Thorax 48: 770-771.
53.
Ryser, M. (2009) Photonics for the functional monitoring of ciliated airway epithelia. PhD thesis, Institute of Applied Physics, University of Bern.
54.
Ryser, M., A. Burn, T. Wessel, M. Frenz, J. Rička (2007) Functional imaging of mucociliary phenomena: high-speed digital reflection contrast microscopy. Eur Biophys J 37: 35-54.
55.
Saruhan, B.G., H. Sağsoz, M.E. Akbalik, M.A. Ketani (2011) Distribution of estrogen receptor α and progesterone receptor B in the bovine oviduct during the follicular and luteal phases of the sexual cycle: an immunohistochemical and semi-quantitative study. Biotech Histochem 86: 315-325.
56.
Satir, P., S.T. Christensen (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69: 377-400.
57.
Shi, D., K. Komatsu, T. Uemura, T. Fujimori (2011) Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct. Genes Cells 16: 282-290.
58.
Suarez, S.S., A.A. Pacey (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12: 23-37.
59.
Toskala, E., K.M. Westrin, P. Stierna, M. Rautiainen (1997) Ciliary ultrastructure in experimental sinusitis. Acta Otolaryngol (suppl) 529: 137-139.
60.
Tsang, K.W., G.L. Tipoe, J.C. Mak, J. Sun, M. Wong, R. Leung, K.C. Tan, C.K. MedStat, J.C. Ho, P.L. Ho, A. Rutman, W.K. Lam (2005) Ciliary central microtubular orientation is of no clinical significance in bronchiectasis. Respir Med 99: 290-297.
61.
Vladar, E.K., T. Stearns (2007) Molecular characterization of centriole assembly in ciliated epithelial cells. J Cell Biol 178: 31-42.
62.
Walentek, P., I. Schneider, A. Schweickert, M. Blum (2013) Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development. PLoS One 8: e73646.
63.
Wallingford, J.B. (2010) Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol 22: 597-604.
64.
Wallingford, J.B., B. Mitchell (2011) Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 25: 201-213.
65.
Warner, F.D., P. Satir (1974) The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol 63: 35-63.
66.
Wessel, T., U. Schuchter, H. Walt (2004) Ciliary motility in bovine oviducts for sensing rapid non-genomic reactions upon exposure to progesterone. Horm Metab Res 36: 136-141
67.
West, N.B., R.M. Brenner (1983) Estrogen receptor levels in the oviducts and endometria of cynomolgus macaques during the menstrual cycle. Biol Reprod 29: 1303-1312.
68.
Willems, T., M. Jorissen (2000) Correlations between ciliary structure and ciliary function. Acta Otorhinolaryngol Belg 54: 299-308.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.