Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Basic Thyroidology / Original Paper

Free Access

Evolutionary Conservation of 3-Iodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1

Cöster M.a · Biebermann H.b · Schöneberg T.a · Stäubert C.a

Author affiliations

aInstitute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, and bInstitut für Experimenelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany

Corresponding Author

Claudia Stäubert

Institute of Biochemistry, Molecular Biochemistry

Faculty of Medicine, University of Leipzig

Johannisallee 30, DE-04103 Leipzig (Germany)

E-Mail claudia.staeubert@medizin.uni-leipzig.de

Related Articles for ""

Eur Thyroid J 2015;4(suppl 1):9-20

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Abstract

Objectives: The trace amine-associated receptor 1 (Taar1) is a Gs protein-coupled receptor activated by trace amines, such as β-phenylethylamine (β-PEA) and 3-iodothyronamine (T1AM). T1AM is an endogenous biogenic amine and thyroid hormone derivative that exerts several biological functions. However, the physiological relevance of T1AM acting via Taar1 is still under discussion. Therefore, we studied the structural and functional evolution of Taar1 in vertebrates to provide evidence for a conserved Taar1-mediated T1AM function. Study Design: We searched public sequence databases to retrieve Taar1 sequence information from vertebrates. We cloned and functionally characterized Taar1 from selected vertebrate species using cAMP assays to determine the evolutionary conservation of T1AM action at Taar1. Results: We found intact open reading frames of Taar1 in more than 100 vertebrate species, including mammals, sauropsids and amphibians. Evolutionary conservation analyses of Taar1 protein sequences revealed a high variation in amino acid residues proposed to be involved in agonist binding, especially in rodent Taar1 orthologs. Functional characterization showed that T1AM, β-PEA and p-tyramine (p-Tyr) act as agonists at all tested orthologs, but EC50 values of T1AM at rat Taar1 differed significantly when compared to all other tested vertebrate Taar1. Conclusions: The high structural conservation of Taar1 throughout vertebrate evolution highlights the physiological relevance of Taar1, but species-specific differences in T1AM potency at Taar1 orthologs suggest a specialization of rat Taar1 for T1AM recognition. In contrast, β-PEA and p-Tyr potencies were rather conserved throughout all tested Taar1 orthologs. We provide evidence that the observed differences in potency are related to differences in constraint during Taar1 evolution.

© 2015 European Thyroid Association Published by S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Basic Thyroidology / Original Paper

Received: November 17, 2014
Accepted: April 21, 2015
Published online: May 29, 2015
Issue release date: September 2015

Number of Print Pages: 12
Number of Figures: 3
Number of Tables: 2

ISSN: 2235-0640 (Print)
eISSN: 2235-0802 (Online)

For additional information: http://www.karger.com/ETJ


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.