Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

At the Cutting Edge

Shaping the Reproductive System: Role of Semaphorins in Gonadotropin-Releasing Hormone Development and Function

Giacobini P.

Author affiliations

Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, School of Medicine, University of Lille, and Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France

Related Articles for ""

Neuroendocrinology 2015;102:200-215

Do you have an account?

Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of At the Cutting Edge

Received: December 15, 2014
Accepted: April 28, 2015
Published online: May 07, 2015
Issue release date: November 2015

Number of Print Pages: 16
Number of Figures: 5
Number of Tables: 0

ISSN: 0028-3835 (Print)
eISSN: 1423-0194 (Online)

For additional information: https://www.karger.com/NEN

Abstract

The semaphorin proteins, which contribute to the morphogenesis and homeostasis of a wide range of systems, are among the best-studied families of guidance cues. Much recent research has focused on the role of semaphorins in the development and adult activity of hormone systems and, reciprocally, how circulating reproductive hormones regulate their expression and function. Specifically, several reports have focused on the molecular mechanisms underlying the effects of semaphorins on the migration, survival and structural and functional plasticity of neurons that secrete gonadotropin-releasing hormone (GnRH), essential for the acquisition and maintenance of reproductive competence in mammals. Alterations in the development of this neuroendocrine system lead to anomalous or absent GnRH secretion, resulting in heterogeneous reproductive disorders such as congenital hypogonadotropic hypogonadism (CHH) or other conditions characterized by infertility or subfertility. This review summarizes current knowledge of the role of semaphorins and their receptors on the development, differentiation and plasticity of the GnRH system. In addition, the involvement of genetic deficits in semaphorin signaling in some forms of CHH in humans is discussed.

© 2015 S. Karger AG, Basel


References

  1. Kruger RP, Aurandt J, Guan KL: Semaphorins command cells to move. Nat Rev Mol Cell Biol 2005;6:789-800.
  2. Casazza A, Fazzari P, Tamagnone L: Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms. Adv Exp Med Biol 2007;600:90-108.
  3. Tran TS, Kolodkin AL, Bharadwaj R: Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 2007;23:263-292.
  4. Perala N, Sariola H, Immonen T: More than nervous: the emerging roles of plexins. Differentiation 2012;83:77-91.
  5. Pasterkamp RJ: Getting neural circuits into shape with semaphorins. Nat Rev Neurosci 2012;13:605-618.
  6. Neufeld G, Kessler O: The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 2008;8:632-645.
  7. Zhou Y, Gunput RA, Pasterkamp RJ: Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 2008;33:161-170.
  8. Capparuccia L, Tamagnone L: Semaphorin signaling in cancer cells and in cells of the tumor microenvironment - two sides of a coin. J Cell Sci 2009;122:1723-1736.
  9. Ch'ng ES, Kumanogoh A: Roles of Sema4D and Plexin-B1 in tumor progression. Mol Cancer 2010;9:251.
  10. Wray S: From nose to brain: development of gonadotrophin-releasing hormone-1 neurones. J Neuroendocrinol 2010;22:743-753.
  11. Schwanzel-Fukuda M, Pfaff DW: Origin of luteinizing hormone-releasing hormone neurons. Nature 1989;338:161-164.
  12. Wray S, Grant P, Gainer H: Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 1989;86:8132-8136.
  13. Ojeda SR, Skinner MK: Physiology of the gonadotropin-releasing hormone neuronal network; in Knobil E, Neill JD (eds): Physiology of Reproduction, ed 3. New York, Elsevier, 2006, pp 2061-2126.
  14. Gonzalez-Martinez D, Hu Y, Bouloux PM: Ontogeny of GnRH and olfactory neuronal systems in man: novel insights from the investigation of inherited forms of Kallmann's syndrome. Front Neuroendocrinol 2004;25:108-130.
  15. Wray S: Development of gonadotropin-releasing hormone-1 neurons. Front Neuroendocrinol 2002;23:292-316.
  16. Yoshida K, Tobet SA, Crandall JE, Jimenez TP, Schwarting GA: The migration of luteinizing hormone-releasing hormone neurons in the developing rat is associated with a transient, caudal projection of the vomeronasal nerve. J Neurosci 1995;15:7769-7777.
    External Resources
  17. Wierman ME, Kiseljak-Vassiliades K, Tobet S: Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol 2011;32:43-52.
  18. Schwarting GA, Wierman ME, Tobet SA: Gonadotropin-releasing hormone neuronal migration. Semin Reprod Med 2007;25:305-312.
  19. Giacobini P, Messina A, Morello F, Ferraris N, Corso S, Penachioni J, Giordano S, Tamagnone L, Fasolo A: Semaphorin 4D regulates gonadotropin hormone-releasing hormone-1 neuronal migration through PlexinB1-Met complex. J Cell Biol 2008;183:555-566.
  20. Giger RJ, Wolfer DP, De Wit GM, Verhaagen J: Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis. J Comp Neurol 1996;375:378-392.
    External Resources
  21. Giger RJ, Cloutier JF, Sahay A, Prinjha RK, Levengood DV, Moore SE, Pickering S, Simmons D, Rastan S, Walsh FS, Kolodkin AL, Ginty DD, Geppert M: Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 2000;25:29-41.
  22. Cloutier JF, Giger RJ, Koentges G, Dulac C, Kolodkin AL, Ginty DD: Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 2002;33:877-892.
  23. Schwarting GA, Kostek C, Ahmad N, Dibble C, Pays L, Puschel AW: Semaphorin 3A is required for guidance of olfactory axons in mice. J Neurosci 2000;20:7691-7697.
    External Resources
  24. Messina A, Ferraris N, Wray S, Cagnoni G, Donohue DE, Casoni F, Kramer PR, Derijck AA, Adolfs Y, Fasolo A, Pasterkamp RJ, Giacobini P: Dysregulation of Semaphorin7A/β1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum Mol Genet 2011;20:4759-4774.
  25. Pasterkamp RJ, Kolk SM, Hellemons AJ, Kolodkin AL: Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration. BMC Dev Biol 2007;7:98.
  26. de Castro F, Hu L, Drabkin H, Sotelo C, Chedotal A: Chemoattraction and chemorepulsion of olfactory bulb axons by different secreted semaphorins. J Neurosci 1999;19:4428-4436.
    External Resources
  27. Ebert AM, Lamont RE, Childs SJ, McFarlane S: Neuronal expression of class 6 semaphorins in zebrafish. Gene Expr Patterns 2012;12:117-122.
  28. Williams-Hogarth LC, Puche AC, Torrey C, Cai X, Song I, Kolodkin AL, Shipley MT, Ronnett GV: Expression of semaphorins in developing and regenerating olfactory epithelium. J Comp Neurol 2000;423:565-578.
  29. Wu H, Fan J, Zhu L, Liu S, Wu Y, Zhao T, Wu Y, Ding X, Fan W, Fan M: Sema4C expression in neural stem/progenitor cells and in adult neurogenesis induced by cerebral ischemia. J Mol Neurosci 2009;39:27-39.
  30. Yu HH, Houart C, Moens CB: Cloning and embryonic expression of zebrafish neuropilin genes. Gene Expr Patterns 2004;4:371-378.
  31. Murakami Y, Suto F, Shimizu M, Shinoda T, Kameyama T, Fujisawa H: Differential expression of plexin-A subfamily members in the mouse nervous system. Dev Dyn 2001;220:246-258.
  32. Kobayashi H, Koppel AM, Luo Y, Raper JA: A role for collapsin-1 in olfactory and cranial sensory axon guidance. J Neurosci 1997;17:8339-8352.
    External Resources
  33. Pasterkamp RJ, De Winter F, Holtmaat AJ, Verhaagen J: Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons. J Neurosci 1998;18:9962-9976.
    External Resources
  34. Cariboni A, Hickok J, Rakic S, Andrews W, Maggi R, Tischkau S, Parnavelas JG: Neuropilins and their ligands are important in the migration of gonadotropin-releasing hormone neurons. J Neurosci 2007;27:2387-2395.
  35. Walz A, Rodriguez I, Mombaerts P: Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci 2002;22:4025-4035.
    External Resources
  36. Imai T, Yamazaki T, Kobayakawa R, Kobayakawa K, Abe T, Suzuki M, Sakano H: Pre-target axon sorting establishes the neural map topography. Science 2009;325:585-590.
  37. Cummings DM, Brunjes PC: Migrating luteinizing hormone-releasing hormone (LHRH) neurons and processes are associated with a substrate that expresses S100. Brain Res Dev Brain Res 1995;88:148-157.
  38. Geller S, Kolasa E, Tillet Y, Duittoz A, Vaudin P: Olfactory ensheathing cells form the microenvironment of migrating GnRH-1 neurons during mouse development. Glia 2013;61:550-566.
  39. Miller AM, Treloar HB, Greer CA: Composition of the migratory mass during development of the olfactory nerve. J Comp Neurol 2010;518:4825-4841.
  40. Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S: Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci 2011;31:6915-6927.
  41. Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV: Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci USA 2010;107:21040-21045.
  42. Katoh H, Shibata S, Fukuda K, Sato M, Satoh E, Nagoshi N, Minematsu T, Matsuzaki Y, Akazawa C, Toyama Y, Nakamura M, Okano H: The dual origin of the peripheral olfactory system: placode and neural crest. Mol Brain 2011;4:34.
  43. Palevitch O, Abraham E, Borodovsky N, Levkowitz G, Zohar Y, Gothilf Y: Cxcl12a- Cxcr4b signaling is important for proper development of the forebrain GnRH system in zebrafish. Gen Comp Endocrinol 2010;165:262-268.
  44. Kramer PR, Wray S: Nasal embryonic LHRH factor (NELF) expression within the CNS and PNS of the rodent. Gene Expr Patterns 2001;1:23-26.
  45. Toba Y, Tiong JD, Ma Q, Wray S: CXCR4/SDF-1 system modulates development of GnRH-1 neurons and the olfactory system. Dev Neurobiol 2008;68:487-503.
  46. Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, Chang YC, Wang HJ, Wang HW, Tsai CH, Li H: Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 2008;118:2482-2495.
  47. Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq M: Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 2001;13:845-856.
  48. Cariboni A, Davidson K, Rakic S, Maggi R, Parnavelas JG, Ruhrberg C: Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: Implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 2011;20:336-344.
  49. Cariboni A, Davidson K, Dozio E, Memi F, Schwarz Q, Stossi F, Parnavelas JG, Ruhrberg C: VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels. Development 2011;138:3723-3733.
  50. Hanchate NK, Giacobini P, Lhuillier P, et al: SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS Genet 2012;8:e1002896.
  51. Schwanzel-Fukuda M, Bick D, Pfaff DW: Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res 1989;6:311-326.
  52. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735-745.
  53. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G: Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J Biol Chem 2000;275:29922.
  54. Karpanen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, Tamagnone L, Alitalo K: Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 2006;20:1462-1472.
  55. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983-985.
  56. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-1309.
  57. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435-439.
  58. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439-442.
  59. Fantin A, Maden CH, Ruhrberg C: Neuropilin ligands in vascular and neuronal patterning. Biochem Soc Trans 2009;37:1228-1232.
  60. Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR: Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 2002;277:11410-11415.
  61. Oosthuyse B, Moons L, Storkebaum E, et al: Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001;28:131-138.
  62. Sondell M, Lundborg G, Kanje M: Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 1999;19:5731-5740.
    External Resources
  63. Ohoka Y, Hirotani M, Sugimoto H, Fujioka S, Furuyama T, Inagaki S: Semaphorin 4C, a transmembrane semaphorin, [corrected] associates with a neurite-outgrowth-related protein, SFAP75. Biochem Biophys Res Commun 2001;280:237-243.
  64. Inagaki S, Ohoka Y, Sugimoto H, Fujioka S, Amazaki M, Kurinami H, Miyazaki N, Tohyama M, Furuyama T: Sema4c, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. J Biol Chem 2001;276:9174-9181.
  65. Elhabazi A, Delaire S, Bensussan A, Boumsell L, Bismuth G: Biological activity of soluble CD100. I. The extracellular region of CD100 is released from the surface of T lymphocytes by regulated proteolysis. J Immunol 2001;166:4341-4347.
  66. Wang X, Kumanogoh A, Watanabe C, Shi W, Yoshida K, Kikutani H: Functional soluble CD100/Sema4D released from activated lymphocytes: possible role in normal and pathologic immune responses. Blood 2001;97:3498-3504.
  67. Swiercz JM, Kuner R, Behrens J, Offermanns S: Plexin-B1 directly interacts with PDZ- RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 2002;35:51-63.
  68. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM: The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 2002;4:720-724.
  69. Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S: Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 2004;23:5131-5137.
  70. Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM, Bussolino F, Giordano S: Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood 2005;105:4321-4329.
  71. Dacquin R, Domenget C, Kumanogoh A, Kikutani H, Jurdic P, Machuca-Gayet I: Control of bone resorption by semaphorin 4D is dependent on ovarian function. PLoS One 2011;6:e26627.
  72. Giacobini P, Messina A, Wray S, Giampietro C, Crepaldi T, Carmeliet P, Fasolo A: Hepatocyte growth factor acts as a motogen and guidance signal for gonadotropin hormone-releasing hormone-1 neuronal migration. J Neurosci 2007;27:431-445.
  73. Jongbloets BC, Ramakers GM, Pasterkamp RJ: Semaphorin7a and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Semin Cell Dev Biol 2013;24:129-138.
  74. Suzuki K, Okuno T, Yamamoto M, Pasterkamp RJ, Takegahara N, Takamatsu H, Kitao T, Takagi J, Rennert PD, Kolodkin AL, Kumanogoh A, Kikutani H: Semaphorin 7a initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature 2007;446:680-684.
  75. Lazova R, Gould Rothberg BE, Rimm D, Scott G: The semaphorin 7a receptor Plexin C1 is lost during melanoma metastasis. Am J Dermatopathol 2009;31:177-181.
  76. Scott GA, McClelland LA, Fricke AF: Semaphorin 7a promotes spreading and dendricity in human melanocytes through beta1-integrins. J Invest Dermatol 2008;128:151-161.
  77. Scott GA, McClelland LA, Fricke AF, Fender A: Plexin C1, a receptor for semaphorin 7a, inactivates cofilin and is a potential tumor suppressor for melanoma progression. J Invest Dermatol 2009;129:954-963.
  78. Ohsawa S, Hamada S, Asou H, Kuida K, Uchiyama Y, Yoshida H, Miura M: Caspase-9 activation revealed by semaphorin 7a cleavage is independent of apoptosis in the aged olfactory bulb. J Neurosci 2009;29:11385-11392.
  79. Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M: Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci USA 2010;107:13366-13371.
  80. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL: Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 2003;424:398-405.
  81. Fukunishi A, Maruyama T, Zhao H, Tiwari M, Kang S, Kumanogoh A, Yamamoto N: The action of Semaphorin7A on thalamocortical axon branching. J Neurochem 2011;118:1008-1015.
  82. Carcea I, Patil SB, Robison AJ, Mesias R, Huntsman MM, Froemke RC, Buxbaum JD, Huntley GW, Benson DL: Maturation of cortical circuits requires Semaphorin 7A. Proc Natl Acad Sci USA 2014;111:13978-13983.
  83. Parkash J, Cimino I, Ferraris N, Casoni F, Wray S, Cappy H, Prevot V, Giacobini P: Suppression of beta1-integrin in gonadotropin-releasing hormone cells disrupts migration and axonal extension resulting in severe reproductive alterations. J Neurosci 2012;32:16992-17002.
  84. de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E: A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 1997;337:1597-1602.
  85. Mitchell AL, Dwyer A, Pitteloud N, Quinton R: Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol Metab 2011;22:249-258.
  86. Bonomi M, Libri DV, Guizzardi F, Guarducci E, Maiolo E, Pignatti E, Asci R, Persani L; Idiopathic Central Hypogonadism Study Group of the Italian Societies of Endocrinology and Pediatric Endocrinology and Diabetes: New understandings of the genetic basis of isolated idiopathic central hypogonadism. Asian J Androl 2012;14:49-56.
  87. Legouis R, Hardelin JP, Levilliers J, Claverie JM, Compain S, Wunderle V, Millasseau P, Le Paslier D, Cohen D, Caterina D, et al: The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 1991;67:423-435.
  88. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, et al: A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991;353:529-536.
  89. Dode C, Levilliers J, Dupont JM, et al: Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 2003;33:463-465.
  90. Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SH, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N: Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 2008;118:2822-2831.
  91. Miraoui H, Dwyer AA, Sykiotis GP, et al: Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet 2013;92:725-743.
  92. Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombes M, Millar RP, Guiochon-Mantel A, Young J: Isolated familial hypogonadotropic hypogonadism and a GnRH1 mutation. N Engl J Med 2009;360:2742-2748.
  93. Chan YM, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaras S, Gaspert A, Lavoie HB, Wu CH, Crowley WF Jr, Amory JK, Pitteloud N, Seminara SB: GnRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 2009;106:11703-11708.
  94. Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, Musgrove LC, Sellers JC, Neill JD: Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 1998;18:14-15.
  95. Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B: Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 2012;366:629-635.
  96. Seminara SB, Messager S, Chatzidaki EE, et al: The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614-1627.
  97. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E: Hypogonadotropic hypogonadism due to loss of function of the KISS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003;100:10972-10976.
  98. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK: TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 2009;41:354-358.
  99. Trarbach EB, Baptista MT, Garmes HM, Hackel C: Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients. J Endocrinol 2005;187:361-368.
  100. Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP: Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2006;2:e175.
  101. Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW, Plummer L, Jacobson-Dickman EE, Mellon PL, Zhou QY, Crowley WF Jr: Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 2007;104:17447-17452.
  102. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC: Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 2008;83:511-519.
  103. Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bulow HE: Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proc Natl Acad Sci USA 2011;108:11524-11529.
  104. Kim HG, Ahn JW, Kurth I, Ullmann R, Kim HT, Kulharya A, Ha KS, Itokawa Y, Meliciani I, Wenzel W, Lee D, Rosenberger G, Ozata M, Bick DP, Sherins RJ, Nagase T, Tekin M, Kim SH, Kim CH, Ropers HH, Gusella JF, Kalscheuer V, Choi CY, Layman LC: WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 2010;87:465-479.
  105. Kotan LD, Hutchins BI, Ozkan Y, Demirel F, Stoner H, Cheng PJ, Esen I, Gurbuz F, Bicakci YK, Mengen E, Yuksel B, Wray S, Topaloglu AK: Mutations in FEZF1 cause Kallmann syndrome. Am J Hum Genet 2014;95:326-331.
  106. Pingault V, Bodereau V, Baral V, Marcos S, Watanabe Y, Chaoui A, Fouveaut C, Leroy C, Verier-Mine O, Francannet C, Dupin-Deguine D, Archambeaud F, Kurtz FJ, Young J, Bertherat J, Marlin S, Goossens M, Hardelin JP, Dode C, Bondurand N: Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am J Hum Genet 2013;92:707-724.
  107. Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, Tosca L, Sarfati J, Brioude F, Esteva B, Briand-Suleau A, Brisset S, Goossens M, Tachdjian G, Guiochon-Mantel A: SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod 2012;27:1460-1465.
  108. Kansakoski J, Fagerholm R, Laitinen EM, Vaaralahti K, Hackman P, Pitteloud N, Raivio T, Tommiska J: Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism. Pediatr Res 2014;75:641-644.
  109. Balasubramanian R, Crowley WF Jr: Isolated GnRH deficiency: a disease model serving as a unique prism into the systems biology of the GnRH neuronal network. Mol Cell Endocrinol 2011;346:4-12.
  110. Dode C, Hardelin JP: Kallmann syndrome. Eur J Hum Genet 2009;17:139-146.
  111. Sykiotis GP, Plummer L, Hughes VA, Au M, Durrani S, Nayak-Young S, Dwyer AA, Quinton R, Hall JE, Gusella JF, Seminara SB, Crowley WF Jr, Pitteloud N: Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci USA 2010;107:15140-15144.
  112. Schulz Y, Wehner P, Opitz L, Salinas-Riester G, Bongers EM, van Ravenswaaij-Arts CM, Wincent J, Schoumans J, Kohlhase J, Borchers A, Pauli S: CHD7, the gene mutated in charge syndrome, regulates genes involved in neural crest cell guidance. Hum Genet 2014;133:997-1009.
  113. Kim HG, Layman LC: The role of CHD7 and the newly identified WDR11 gene in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2011;346:74-83.
  114. Janssen N, Bergman JE, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, Hofstra RM, van Ravenswaaij-Arts CM, Hoefsloot LH: Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 2012;33:1149-1160.
  115. Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW: SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 2004;41:e94.
  116. King JC, Letourneau RJ: Luteinizing hormone-releasing hormone terminals in the median eminence of rats undergo dramatic changes after gonadectomy, as revealed by electron microscopic image analysis. Endocrinology 1994;134:1340-1351.
  117. Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC: Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 1999;94:809-819.
  118. Herbison AE: Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr Rev 1998;19:302-330.
  119. Moenter SM, Chu Z, Christian CA: Neurobiological mechanisms underlying oestradiol negative and positive feedback regulation of gonadotrophin-releasing hormone neurones. J Neuroendocrinol 2009;21:327-333.
  120. Ronnekleiv OK, Kelly MJ: Diversity of ovarian steroid signaling in the hypothalamus. Front Neuroendocrinol 2005;26:65-84.
  121. Piet R, Boehm U, Herbison AE: Estrous cycle plasticity in the hyperpolarization-activated current IH is mediated by circulating 17beta-estradiol in preoptic area kisspeptin neurons. J Neurosci 2013;33:10828-10839.
  122. Prevot V, Bellefontaine N, Baroncini M, Sharif A, Hanchate NK, Parkash J, Campagne C, de Seranno S: Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 2010;22:639-649.
  123. Garcia-Segura LM, Lorenz B, DonCarlos LL: The role of glia in the hypothalamus: implications for gonadal steroid feedback and reproductive neuroendocrine output. Reproduction 2008;135:419-429.
  124. Barres BA: A role for glia in LHRH release. Curr Biol 1992;2:645-647.
  125. Ojeda SR, Lomniczi A, Sandau U: Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur J Neurosci 2010;32:2003-2010.
  126. Sharif A, Baroncini M, Prevot V: Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 2013;98:1-15.
  127. Carmeliet P, Tessier-Lavigne M: Common mechanisms of nerve and blood vessel wiring. Nature 2005;436:193-200.
  128. Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A: Guidance of vascular development: lessons from the nervous system. Circ Res 2009;104:428-441.
  129. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD: Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 2008;452:759-763.
  130. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne M, Taniguchi M, Puschel AW, Bussolino F: Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003;424:391-397.
  131. Valdembri D, Caswell PT, Anderson KI, Schwarz JP, Konig I, Astanina E, Caccavari F, Norman JC, Humphries MJ, Bussolino F, Serini G: Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 2009;7:e25.
  132. Giacobini P, Parkash J, Campagne C, Messina A, Casoni F, Vanacker C, Langlet F, Hobo B, Cagnoni G, Gallet S, Hanchate NK, Mazur D, Taniguchi M, Mazzone M, Verhaagen J, Ciofi P, Bouret SG, Tamagnone L, Prevot V: Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol 2014;12:e1001808.
  133. De Seranno S, Estrella C, Loyens A, Cornea A, Ojeda SR, Beauvillain JC, Prevot V: Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J Neurosci 2004;24:10353-10363.
  134. Bouret S, De Seranno S, Beauvillain JC, Prevot V: Transforming growth factor beta1 may directly influence gonadotropin-releasing hormone gene expression in the rat hypothalamus. Endocrinology 2004;145:1794-1801.
  135. Givalois L, Arancibia S, Alonso G, Tapia-Arancibia L: Expression of brain-derived neurotrophic factor and its receptors in the median eminence cells with sensitivity to stress. Endocrinology 2004;145:4737-4747.
  136. Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M, Poo M: Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998;281:1515-1518.
  137. Ikegami R, Zheng H, Ong SH, Culotti J: Integration of semaphorin-2A/MAB-20, ephrin-4, and UNC-129 TGF-beta signaling pathways regulates sorting of distinct sensory rays in C. elegans. Dev Cell 2004;6:383-395.
  138. Kettunen P, Loes S, Furmanek T, Fjeld K, Kvinnsland IH, Behar O, Yagi T, Fujisawa H, Vainio S, Taniguchi M, Luukko K: Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development 2005;132:323-334.
  139. Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, Gallet S, Balland E, Malone S, Pralong FP, Cagnoni G, Schellino R, De Marchi S, Mazzone M, Pasterkamp RJ, Tamagnone L, Prevot V, Giacobini P: Semaphorin7A regulates neuroglial plasticity at the adult hypothalamic median eminence. Nat Commun 2015;6:6385.
  140. Prevot V, Dutoit S, Croix D, Tramu G, Beauvillain JC: Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat. Neuroscience 1998;84:177-191.
  141. Smith MS, Freeman ME, Neill JD: The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 1975;96:219-226.
  142. Dafopoulos K, Mademtzis I, Vanakara P, Kallitsaris A, Stamatiou G, Kotsovassilis C, Messinis IE: Evidence that termination of the estradiol-induced luteinizing hormone surge in women is regulated by ovarian factors. J Clin Endocrinol Metab 2006;91:641-645.
  143. Kasa-Vubu JZ, Dahl GE, Evans NP, Thrun LA, Moenter SM, Padmanabhan V, Karsch FJ: Progesterone blocks the estradiol-induced gonadotropin discharge in the ewe by inhibiting the surge of gonadotropin-releasing hormone. Endocrinology 1992;131:208-212.
  144. Baroncini M, Jissendi P, Catteau-Jonard S, Dewailly D, Pruvo JP, Francke JP, Prevot V: Sex steroid hormones-related structural plasticity in the human hypothalamus. Neuroimage 2010;50:428-433.
  145. Messina A, Giacobini P: Semaphorin signaling in the development and function of the gonadotropin hormone-releasing hormone system. Front Endocrinol 2013;4:133.

Article / Publication Details

First-Page Preview
Abstract of At the Cutting Edge

Received: December 15, 2014
Accepted: April 28, 2015
Published online: May 07, 2015
Issue release date: November 2015

Number of Print Pages: 16
Number of Figures: 5
Number of Tables: 0

ISSN: 0028-3835 (Print)
eISSN: 1423-0194 (Online)

For additional information: https://www.karger.com/NEN


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.