Background:<smlcap>L</smlcap>-Carnitine has been demonstrated to ameliorate cachectic symptoms. In the present study, we sought to investigate the role of the peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling pathway in the ameliorative effects of <smlcap>L</smlcap>-carnitine on cancer cachexia in a colon-26 tumor-bearing mouse model. Methods: The cachectic mice received <smlcap>L</smlcap>-carnitine (p.o.) or etomoxir (i.p.), or pioglitazone hydrochloride (p.o.) or GW9662 (i.p.). The physiological cachexia parameters, biochemical parameters, and serum cytokines were measured. The expression levels of representative molecules in the PPAR-γ signaling pathway were measured by using quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot analysis. Results: Oral administration of <smlcap>L</smlcap>-carnitine at 9 mg/kg/day improved the cachexia parameters and biochemical parameters in cancer cachectic mice. The elevated serum concentrations of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) were decreased by <smlcap>L</smlcap>-carnitine. These ameliorative effects of <smlcap>L</smlcap>-carnitine were lessened by the carnitine palmitoyltransferase I (CPT I) inhibitor, etomoxir. The mRNA and protein expression levels of PPAR-α and PPAR-γ were decreased in the livers of cancer cachectic mice and increased after <smlcap>L</smlcap>-carnitine administration, which attenuated the increased mRNA expression levels of sterol-regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS). Similar to pioglitazone, <smlcap>L</smlcap>-carnitine augmented the phosphorylation of PPAR-γ and attenuated the expression levels of phospho-p65 and cyclooxygenase (COX)-2. Additionally, the above-mentioned effects of <smlcap>L</smlcap>-carnitine were reversed by GW9662. Conclusion:<smlcap>L</smlcap>-Carnitine exerts its ameliorative effects in cancer cachexia in association with the PPAR-γ signaling pathway.

1.
Thompson MP, Cooper ST, Parry BR, Tuckey JA: Increased expression of the mRNA for hormone-sensitive lipase in adipose tissue of cancer patients. Biochim Biophys Acta 1993;1180:236-242.
[PubMed]
2.
Berriel Diaz M, Krones-Herzig A, Metzger D, Ziegler A, Vegiopoulos A, Klingenspor M, Muller-Decker K, Herzig S: Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice. Hepatology 2008;48:782-791.
[PubMed]
3.
Liu S, Wu HJ, Zhang ZQ, Chen Q, Liu B, Wu JP, Zhu L: L-Carnitine ameliorates cancer cachexia in mice by regulating the expression and activity of carnitine palmityl transferase. Cancer Biol Ther 2011;12:125-130.
[PubMed]
4.
Rotondo D, Davidson J: Genetics and molecular biology: Fatty acid metabolism in cancer cell survival; carnitine palmitoyltransferase-1 as a critical anticancer target. Curr Opin Lipidol 2011;22:428-429.
[PubMed]
5.
Fortunati N, Manti R, Birocco N, Pugliese M, Brignardello E, Ciuffreda L, Catalano MG, Aragno M, Boccuzzi G: Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients. Oncol Rep 2007;18:1521-1527.
[PubMed]
6.
Silverio R, Laviano A, Rossi Fanelli F, Seelaender M: L-Carnitine and cancer cachexia: clinical and experimental aspects. J Cachexia Sarcopenia Muscle 2011;2:37-44.
[PubMed]
7.
Mantovani G, Maccio A, Madeddu C, Serpe R, Massa E, Dessi M, Panzone F, Contu P: Randomized phase III clinical trial of five different arms of treatment in 332 patients with cancer cachexia. Oncologist 2010;15:200-211.
[PubMed]
8.
Zuijdgeest-Van Leeuwen SD, Dagnelie PC, Wattimena JL, Van den Berg JW, Van der Gaast A, Swart GR, Wilson JH: Eicosapentaenoic acid ethyl ester supplementation in cachectic cancer patients and healthy subjects: effects on lipolysis and lipid oxidation. Clin Nutr 2000;19:417-423.
[PubMed]
9.
Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D: PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012;486:549-553.
[PubMed]
10.
Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996;37:907-925.
[PubMed]
11.
Xu L, Shen S, Ma Y, Kim JK, Rodriguez-Agudo D, Heuman DM, Hylemon PB, Pandak WM, Ren S: 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARgamma signaling in human THP-1 macrophages. Am J Physiol Endocrinol Metab 2012;302:E788-E799.
[PubMed]
12.
Batista ML Jr, Neves RX, Peres SB, Yamashita AS, Shida CS, Farmer SR, Seelaender M: Heterogeneous time-dependent response of adipose tissue during the development of cancer cachexia. J Endocrinol 2012;215:363-373.
[PubMed]
13.
Bing C, Russell S, Becket E, Pope M, Tisdale MJ, Trayhurn P, Jenkins JR: Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer 2006;95:1028-1037.
[PubMed]
14.
Jun DW, Cho WK, Jun JH, Kwon HJ, Jang KS, Kim HJ, Jeon HJ, Lee KN, Lee HL, Lee OY, Yoon BC, Choi HS, Hahm JS, Lee MH: Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction. Liver Int 2011;31:1315-1324.
[PubMed]
15.
van Lunteren E, Spiegler S, Moyer M: Contrast between cardiac left ventricle and diaphragm muscle in expression of genes involved in carbohydrate and lipid metabolism. Respir Physiol Neurobiol 2008;161:41-53.
[PubMed]
16.
van der Leij FR, Bloks VW, Grefhorst A, Hoekstra J, Gerding A, Kooi K, Gerbens F, te Meerman G, Kuipers F: Gene expression profiling in livers of mice after acute inhibition of beta-oxidation. Genomics 2007;90:680-689.
[PubMed]
17.
El-Sheikh AA, Rifaai RA: Peroxisome proliferator activator receptor (PPAR)-gamma ligand, but not PPAR-alpha, ameliorates cyclophosphamide-induced oxidative stress and inflammation in rat liver. PPAR Res 2014;2014:626319.
[PubMed]
18.
Mulligan HD, Tisdale MJ: Metabolic substrate utilization by tumour and host tissues in cancer cachexia. Biochem J 1991;277(Pt 2):321-326.
[PubMed]
19.
Laine A, Iyengar P, Pandita TK: The role of inflammatory pathways in cancer-associated cachexia and radiation resistance. Mol Cancer Res 2013;11:967-972.
[PubMed]
20.
Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, Kloppel G, Sipos B, Greten FR, Arkan MC: Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 2009;106:3354-3359.
[PubMed]
21.
Huang H, Liu N, Guo H, Liao S, Li X, Yang C, Liu S, Song W, Liu C, Guan L, Li B, Xu L, Zhang C, Wang X, Dou QP, Liu J: L-Carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro. PLoS One 2012;7:e49062.
[PubMed]
22.
Piraino G, Cook JA, O'Connor M, Hake PW, Burroughs TJ, Teti D, Zingarelli B: Synergistic effect of peroxisome proliferator activated receptor-gamma and liver X receptor-alpha in the regulation of inflammation in macrophages. Shock 2006;26:146-153.
[PubMed]
23.
Rollins MD, Sudarshan S, Firpo MA, Etherington BH, Hart BJ, Jackson HH, Jackson JD, Emerson LL, Yang DT, Mulvihill SJ, Glasgow RE: Anti-inflammatory effects of PPAR-gamma agonists directly correlate with PPAR-gamma expression during acute pancreatitis. J Gastrointest Surg 2006;10:1120-1130.
[PubMed]
24.
Klopotek A, Hirche F, Eder K: PPAR gamma ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp Biol Med (Maywood) 2006;231:1365-1372.
[PubMed]
25.
Barbieri M, Di Filippo C, Esposito A, Marfella R, Rizzo MR, D'Amico M, Ferraraccio F, Di Ronza C, Duan SZ, Mortensen RM, Rossi F, Paolisso G: Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-gamma-knockout (CM-PGKO) mice. PLoS One 2012;7:e35999.
[PubMed]
26.
Gordon JN, Green SR, Goggin PM: Cancer cachexia. QJM 2005;98:779-788.
[PubMed]
27.
Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004;119:285-298.
[PubMed]
28.
Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G, Kim TS: Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 2000;275:32681-32687.
[PubMed]
29.
Castrillo A, Diaz-Guerra MJ, Hortelano S, Martin-Sanz P, Bosca L: Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 2000;20:1692-1698.
[PubMed]
30.
Beluzi M, Peres SB, Henriques FS, Sertie RA, Franco FO, Santos KB, Knobl P, Andreotti S, Shida CS, Neves RX, Farmer SR, Seelaender M, Lima FB, Batista ML Jr: Pioglitazone treatment increases survival and prevents body weight loss in tumor-bearing animals: possible anti-cachectic effect. PLoS One 2015;10:e0122660.
[PubMed]
You do not currently have access to this content.