Recovery of motor control is paramount for patients living with paralysis following spinal cord injury (SCI). While a cure or regenerative intervention remains on the horizon for the treatment of SCI, a number of neuroprosthetic devices have been employed to treat and mitigate the symptoms of paralysis associated with injuries to the spinal column and associated comorbidities. The recent success of epidural stimulation to restore voluntary motor function in the lower limbs of a small cohort of patients has breathed new life into the promise of electric-based medicine. Recently, a number of new organic and inorganic electronic devices have been developed for brain-computer interfaces to bypass the injury, for neurorehabilitation, bladder and bowel control, and the restoration of motor or sensory control. Herein, we discuss the recent advances in neuroprosthetic devices for treating SCI and highlight future design needs for closed-loop device systems.

1.
Abidian, M.R., J.M. Corey, D.R. Kipke, D.C. Martin (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6: 421-429.
2.
Abidian, M.R., K.A. Ludwig, T.C. Marzullo, D.C. Martin, D.R. Kipke (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly(3,4-ethylenedioxythiophene) nanotubes. Adv Mater 21: 3764-3770.
3.
Al-Majed, A.A., T.M. Brushart, T. Gordon (2000a) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12: 4381-4390.
4.
Al-Majed, A.A., C.M. Neumann, T.M. Brushart, T. Gordon (2000b) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20: 2602-2608.
5.
Alba, N.A., Z.J. Du, K.A. Catt, T.D. Kozai, X.T. Cui (2015) In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating. Biosensors (Basel) 5: 618-646.
6.
Andrei, A., M. Welkenhuysen, B. Nuttin, W. Eberle (2012) A response surface model predicting the in vivo insertion behavior of micromachined neural implants. J Neural Eng 9: 016005.
7.
Angeli, C.A., V.R. Edgerton, Y.P. Gerasimenko, S.J. Harkema (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(Pt 5): 1394-1409.
8.
Anikeeva, P., A.S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L.A. Gunaydin, L.M. Frank, K. Deisseroth (2012) Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci 15: 163-170.
9.
Apollo, N.V., M.I. Maturana, W. Tong, D.A.X. Nayagam, M.N. Shivdasani, J. Foroughi, G.G. Wallace, S. Prawer, M.R. Ibbotson, D.J. Garrett (2015) Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide. Adv Funct Mater 25: 3551-3559.
10.
Arcot Desai, S., C.A. Gutekunst, S.M. Potter, R.E. Gross (2014) Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus. Front Neuroeng 7: 16.
11.
Asplund, M., C. Boehler, T. Stieglitz (2014) Anti-inflammatory polymer electrodes for glial scar treatment: bringing the conceptual idea to future results. Front Neuroeng 7: 9.
12.
Bacher, D., B. Jarosiewicz, N.Y. Masse, S.D. Stavisky, J.D. Simeral, K. Newell, E.M. Oakley, S.S. Cash, G. Friehs, L.R. Hochberg (2015) Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabil Neural Repair 29: 462-471.
13.
Bamford, J.A., V.K. Mushahwar (2011) Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog Brain Res 194: 227-239.
14.
Bao, F., D. Liu (2004) Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin. Neuroscience 126: 285-295.
15.
Basar, E. (2008) Oscillations in ‘brain-body-mind' - a holistic view including the autonomous system. Brain Res 1235: 2-11.
16.
Bethoux, F., H.L. Rogers, K.J. Nolan, G.M. Abrams, T.M. Annaswamy, M. Brandstater, B. Browne, J.M. Burnfield, W. Feng, M.J. Freed, C. Geis, J. Greenberg, M. Gudesblatt, F. Ikramuddin, A. Jayaraman, S.A. Kautz, H.L. Lutsep, S. Madhavan, J. Meilahn, W.S. Pease, N. Rao, S. Seetharama, P. Sethi, M.A. Turk, R.A. Wallis, C. Kufta (2014) The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair 28: 688-697.
17.
Beuter, A., J.P. Lefaucheur, J. Modolo (2014) Closed-loop cortical neuromodulation in Parkinson's disease: an alternative to deep brain stimulation? Clin Neurophysiol 125: 874-885.
18.
Biran, R., D.C. Martin, P.A. Tresco (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195: 115-126.
19.
Blabe, C.H., V. Gilja, C.A. Chestek, K.V. Shenoy, K.D. Anderson, J.M. Henderson (2015) Assessment of brain-machine interfaces from the perspective of people with paralysis. J Neural Eng 12: 043002.
20.
Blankertz, B., G. Dornhege, M. Krauledat, K.R. Muller, G. Curio (2007) The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37: 539-550.
21.
Boretius, T., J. Badia, A. Pascual-Font, M. Schuettler, X. Navarro, K. Yoshida, T. Stieglitz (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26: 62-69.
22.
Borgens, R.B., L. Callahan, M.F. Rouleau (1987) Anatomy of axolotl flank integument during limb bud development with special reference to a transcutaneous current predicting limb formation. J Exp Zool 244: 203-214.
23.
Borgens, R.B., L.F. Jaffe, M.J. Cohen (1980) Large and persistent electrical currents enter the transected lamprey spinal cord. Proc Natl Acad Sci USA 77: 1209-1213.
24.
Borgens, R.B., E. Roederer, M.J. Cohen (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213: 611-617.
25.
Borgens, R.B., J.P. Toombs, G. Breur, W.R. Widmer, D. Waters, A.M. Harbath, P. March, L.G. Adams (1999) An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J Neurotrauma 16: 639-657.
26.
Borschel, G.H., K.F. Kia, W.M. Kuzon Jr., R.G. Dennis (2003) Mechanical properties of acellular peripheral nerve. J Surg Res 114: 133-139.
27.
Borton, D., S. Micera, J.D. Millan, G. Courtine (2013) Personalized neuroprosthetics. Sci Transl Med 5: 210rv2.
28.
Boyden, E.S., F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8: 1263-1268.
29.
Bresadola, M. (1998) Medicine and science in the life of Luigi Galvani (1737-1798). Brain Res Bull 46: 367-380.
30.
Brindley, G.S., W.S. Lewin (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196: 479-493.
31.
Brindley, G.S., C.E. Polkey, D.N. Rushton (1982) Sacral anterior root stimulators for bladder control in paraplegia. Paraplegia 20: 365-381.
32.
Brindley, G.S., C.E. Polkey, D.N. Rushton, L. Cardozo (1986) Sacral anterior root stimulators for bladder control in paraplegia: the first 50 cases. J Neurol Neurosurg Psychiatry 49: 1104-1114.
33.
Brummer, S.B., M.J. Turner (1977) Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng 24: 59-63.
34.
Bunge, R.P., W.R. Puckett, J.L. Becerra, A. Marcillo, R.M. Quencer (1993) Observations on the pathology of human spinal cord injury: a review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59: 75-89.
35.
Buzsaki, G. (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7: 446-451.
36.
Canales, A., X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva (2015) Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol 33: 277-284.
37.
Capogrosso, M., N. Wenger, S. Raspopovic, P. Musienko, J. Beauparlant, L. Bassi Luciani, G. Courtine, S. Micera (2013) A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 33: 19326-19340.
38.
Carhart, M.R., J.P. He, R. Herman, S. D'Luzansky, W.T. Willis (2004) Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 12: 32-42.
39.
Carmena, J.M., M.A. Lebedev, R.E. Crist, J.E. O'Doherty, D.M. Santucci, D.F. Dimitrov, P.G. Patil, C.S. Henriquez, M.A. Nicolelis (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1: E42.
40.
Chapin, J.K., K.A. Moxon, R.S. Markowitz, M.A. Nicolelis (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2: 664-670.
41.
Chow, B.Y., E.S. Boyden (2013) Optogenetics and translational medicine. Sci Transl Med 5: 177ps175-177ps175.
42.
Cifu, D.X., M.E. Huang, S.A. Kolakowsky-Hayner, R.T. Seel (1999) Age, outcome, and rehabilitation costs after paraplegia caused by traumatic injury of the thoracic spinal cord, conus medullaris, and cauda equina. J Neurotrauma 16: 805-815.
43.
Cohen, D. (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science 161: 784-786.
44.
Collinger, J.L., S. Foldes, T.M. Bruns, B. Wodlinger, R. Gaunt, D.J. Weber (2013) Neuroprosthetic technology for individuals with spinal cord injury. J Spinal Cord Med 36: 258-272.
45.
Cork, R.J., M.E. Mcginnis, J. Tsai, K.R. Robinson (1994) The growth of PC12 neurites is biased towards the anode of an applied electrical field. J Neurobiol 25: 1509-1516.
46.
Cormie, P., K.R. Robinson (2007) Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro. Neurosci Lett 411: 128-132.
47.
Dadarlat, M.C., J.E. O'Doherty, P.N. Sabes (2015) A learning-based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci 18: 138-144.
48.
Danner, S.M., U.S. Hofstoetter, B. Freundl, H. Binder, W. Mayr, F. Rattay, K. Minassian (2015) Human spinal locomotor control is based on flexibly organized burst generators. Brain 138(pt 3): 577-588.
49.
Deisseroth, K. (2010) Controlling the brain with light. Sci Am 303: 48-55.
50.
Deisseroth, K. (2011) Optogenetics. Nat Methods 8: 26-29.
51.
Deisseroth, K., G. Feng, A.K. Majewska, G. Miesenböck, A. Ting, M.J. Schnitzer (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26: 10380-10386.
52.
Donaldson, N., T.A. Perkins, R. Fitzwater, D.E. Wood, F. Middleton (2000) FES cycling may promote recovery of leg function after incomplete spinal cord injury. Spinal Cord 38: 680-682.
53.
Doud, A.J., J.P. Lucas, M.T. Pisansky, B. He (2011) Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS One 6: e26322.
54.
Dryden, D.M., L.D. Saunders, P. Jacobs, D.P. Schopflocher, B.H. Rowe, L.A. May, N. Yiannakoulias, L.W. Svenson, D.C. Voaklander (2005) Direct health care costs after traumatic spinal cord injury. J Trauma 59: 443-449.
55.
Dvir, T., B.P. Timko, M.D. Brigham, S.R. Naik, S.S. Karajanagi, O. Levy, H. Jin, K.K. Parker, R. Langer, D.S. Kohane (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6: 720-725.
56.
Ereifej, E.S., S. Khan, G. Newaz, J. Zhang, G.W. Auner, P.J. VandeVord (2011) Characterization of astrocyte reactivity and gene expression on biomaterials for neural electrodes. J Biomed Mater Res A 99: 141-150.
57.
Ersen, A., S. Elkabes, D.S. Freedman, M. Sahin (2015) Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 12: 016019.
58.
Escabi, M.A., H.L. Read, J. Viventi, D.H. Kim, N.C. Higgins, D.A. Storace, A.S. Liu, A.M. Gifford, J.F. Burke, M. Campisi, Y.S. Kim, A.E. Avrin, V. Spiegel Jan, Y. Huang, M. Li, J. Wu, J.A. Rogers, B. Litt, Y.E. Cohen (2014) A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J Neurophysiol 112: 1566-1583.
59.
Everaert, D.G., A.K. Thompson, S.L. Chong, R.B. Stein (2010) Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair 24: 168-177.
60.
Fattahi, P., G. Yang, G. Kim, M.R. Abidian (2014) A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 26: 1846-1885.
61.
Fawcett, J.W., R.A. Asher (1999) The glial scar and central nervous system repair. Brain Res Bull 49: 377-391.
62.
Fournier, E., C. Passirani, C.N. Montero-Menei, J.P. Benoit (2003) Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 24: 3311-3331.
63.
Fujiwara, T., Y. Kasashima, K. Honaga, Y. Muraoka, T. Tsuji, R. Osu, K. Hase, Y. Masakado, M. Liu (2009) Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabil Neural Repair 23: 125-132.
64.
Fukuma, R., T. Yanagisawa, S. Yorifuji, R. Kato, H. Yokoi, M. Hirata, Y. Saitoh, H. Kishima, Y. Kamitani, T. Yoshimine (2015) Closed-loop control of a neuroprosthetic hand by magnetoencephalographic signals. PLoS One 10: e0131547.
65.
Gad, P., J. Woodbridge, I. Lavrov, H. Zhong, R.R. Roy, M. Sarrafzadeh, V.R. Edgerton (2012) Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats. J Neuroeng Rehabil 9: 38.
66.
Garson, J. (2015) The birth of information in the brain: Edgar Adrian and the vacuum tube. Sci Context 28: 31-52.
67.
Gawad, S., M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, H. Morgan (2009) Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing. Front Neuroeng 2: 1.
68.
Georgopoulos, A.P., F.J. Langheim, A.C. Leuthold, A.N. Merkle (2005) Magnetoencephalographic signals predict movement trajectory in space. Exp Brain Res 167: 132-135.
69.
Gerasimenko, Y.P., D.C. Lu, M. Modaber, S. Zdunowski, P. Gad, D.G. Sayenko, E. Morikawa, P. Haakana, A.R. Ferguson, R.R. Roy, V.R. Edgerton (2015) Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma 32: 1968-1980.
70.
Gilbert, R.J., C.J. Rivet, J.M. Zuidema, P.G. Popovich (2011) Biomaterial design considerations for repairing the injured spinal cord. Crit Rev Biomed Eng 39: 125-180.
71.
Gilja, V., P. Nuyujukian, C.A. Chestek, J.P. Cunningham, B.M. Yu, J.M. Fan, M.M. Churchland, M.T. Kaufman, J.C. Kao, S.I. Ryu, K.V. Shenoy (2012) A high-performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15: 1752-1757.
72.
Gradinaru, V., K.R. Thompson, F. Zhang, M. Mogri, K. Kay, M.B. Schneider, K. Deisseroth (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27: 14231-14238.
73.
Gradinaru, V., F. Zhang, C. Ramakrishnan, J. Mattis, R. Prakash, I. Diester, I. Goshen, K.R. Thompson, K. Deisseroth (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141: 154-165.
74.
Graupe, D. (2002) An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics. Neurol Res 24: 431-442.
75.
Haas, L.F. (2003) Hans Berger (1873-1941), Richard Caton (1842-1926), and electroencephalography. J Neurol Neurosurg Psychiatry 74: 9.
76.
Harris, L.J., J.B. Almerigi (1999) Roberts Bartholow's experimental investigations into the functions of the human brain (1874): the story of a notorious environment. Brain Cogn 40: 92-115.
77.
Hochberg, L.R., D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, J.P. Donoghue (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485: 372-375.
78.
Hochberg, L.R., M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442: 164-171.
79.
Hoffer, J.A., G.E. Loeb (1980) Implantable electrical and mechanical interfaces with nerve and muscle. Ann Biomed Eng 8: 351-360.
80.
Hofstoetter, U.S., S.M. Danner, B. Freundl, H. Binder, W. Mayr, F. Rattay, K. Minassian (2015) Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. J Neurophysiol 114: 400-410.
81.
Hoogerwerf, A.C., K.D. Wise (1994) A three-dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng 41: 1136-1146.
82.
Hopcroft, M.A., William, D. Nix, Kenny, Thomas W. (2010) What is the Young's modulus of silicon? J Microelectromech Syst 19: 229-238.
83.
Hotson, G., D.P. McMullen, M.S. Fifer, M.S. Johannes, K.D. Katyal, M.P. Para, R. Armiger, W.S. Anderson, N.V. Thakor, B.A. Wester, N.E. Crone (2016) Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J Neural Eng 13: 026017.
84.
Humphrey, D.R., E.M. Schmidt, W.D. Thompson (1970) Predicting measures of motor performance from multiple cortical spike trains. Science 170: 758-762.
85.
Iyer, S.M., S.L. Delp (2014) Optogenetic regeneration. Science 344: 44-45.
86.
Jaffe, L.F. (1977) Electrophoresis along cell-membranes. Nature 265: 600-602.
87.
Jaffe, L.F., M.M. Poo (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209: 115-127.
88.
Jones, K.E., P.K. Campbell, R.A. Normann (1992) A glass/silicon composite intracortical electrode array. Ann Biomed Eng 20: 423-437.
89.
Jung, R., A. Belanger, T. Kanchiku, M. Fairchild, J.J. Abbas (2009) Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion. J Neural Eng 6: 055010.
90.
Kafri, M., Y. Laufer (2015) Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng 43: 451-466.
91.
Kandel, E.R., J.H. Schwartz, T.M. Jessell (2000) Principles of Neural Science. New York, McGraw-Hill.
92.
Kasten, M.R., M.D. Sunshine, E.S. Secrist, P.J. Horner, C.T. Moritz (2013) Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury. J Neural Eng 10: 044001.
93.
Keith, M.W. (2001) Neuroprostheses for the upper extremity. Microsurgery 21: 256-263.
94.
Kelly, P.F. (2014) Properties of Materials. Boca Raton, CRC Press.
95.
Kim, D.H., J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers (2008) Stretchable and foldable silicon integrated circuits. Science 320: 507-511.
96.
Kim, D.H., J.A. Rogers (2008) Stretchable electronics: materials strategies and devices. Adv Mater 20: 4887-4892.
97.
Kim, T.I., J.G. McCall, Y.H. Jung, X. Huang, E.R. Siuda, Y. Li, J. Song, Y.M. Song, H.A. Pao, R.H. Kim, C. Lu, S.D. Lee, I.S. Song, G. Shin, R. Al-Hasani, S. Kim, M.P. Tan, Y. Huang, F.G. Omenetto, J.A. Rogers, M.R. Bruchas (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340: 211-216.
98.
Koppes, A.N., A.L. Nordberg, G.M. Paolillo, N.M. Goodsell, H.A. Darwish, L. Zhang, D.M. Thompson (2014) Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A 20: 494-506.
99.
Koppes, A.N., A.M. Seggio, D.M. Thompson (2011) Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J Neural Eng 8: 046023.
100.
Kuiken, T.A., G. Li, B.A. Lock, R.D. Lipschutz, L.A. Miller, K.A. Stubblefield, K.B. Englehart (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301: 619-628.
101.
Lawrence, S.M., G.S. Dhillon, K.W. Horch (2003) Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J Neurosci Methods 131: 9-26.
102.
Leach, J.B., A.K. Achyuta, S.K. Murthy (2010) Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front Neuroeng 2: 18.
103.
Leuthardt, E.C., G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1: 63-71.
104.
Liu, J., H.K. Khalil, K.G. Oweiss (2011) Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. J Neural Eng 8: 045002.
105.
Liu, X., A. Demosthenous, N. Donaldson (2008) Platinum electrode noise in the ENG spectrum. Med Biol Eng Comput 46: 997-1003.
106.
Llewellyn, M.E., K.R. Thompson, K. Deisseroth, S.L. Delp (2010) Orderly recruitment of motor units under optical control in vivo. Nat Med 16: 1161-1165.
107.
Lu, C., U.P. Froriep, R.A. Koppes, A. Canales, V. Caggiano, J. Selvidge, E. Bizzi, P. Anikeeva (2014) Polymer fiber probes enable optical control of spinal cord and muscle function in vivo. Adv Mater 24: 6594-6600.
108.
Mandal, H.S., G.L. Knaack, H. Charkhkar, D.G. McHail, J.S. Kastee, T.C. Dumas, N. Peixoto, J.F. Rubinson, J.J. Pancrazio (2014) Improving the performance of poly(3,4-ethylenedioxythiophene) for brain-machine interface applications. Acta Biomater 10: 2446-2454.
109.
Maynard, E.M., C.T. Nordhausen, R.A. Normann (1997) The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol 102: 228-239.
110.
Mazzoleni, S., G. Stampacchia, A. Gerini, T. Tombini, M.C. Carrozza (2013) FES-cycling training in spinal cord injured patients. Conf Proc IEEE Eng Med Biol Soc 2013: 5339-5341.
111.
McCaig, C.D. (1990) Nerve branching is induced and oriented by a small applied electric field. J Cell Sci 95: 605-615.
112.
McCaig, C.D., B. Song, A.M. Rajnicek (2009) Electrical dimensions in cell science. J Cell Sci 122: 4267-4276.
113.
McFarland, D.J., W.A. Sarnacki, J.R. Wolpaw (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7: 036007.
114.
Merrill, D.R., M. Bikson, J.G.R. Jefferys (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Meth 141: 171-198.
115.
Mestais, C.S., G. Charvet, F. Sauter-Starace, M. Foerster, D. Ratel, A.L. Benabid (2015) WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications. IEEE Trans Neural Syst Rehabil Eng 23: 10-21.
116.
Micera, S., P.M. Rossini, J. Rigosa, L. Citi, J. Carpaneto, S. Raspopovic, M. Tombini, C. Cipriani, G. Assenza, M.C. Carrozza, K.P. Hoffmann, K. Yoshida, X. Navarro, P. Dario (2011) Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J Neuroeng Rehabil 8: 53.
117.
Millesi, H., G. Zoch, R. Reihsner (1995) Mechanical properties of peripheral nerves. Clin Orthop Relat Res 76-83.
118.
Moritz, C.T., S.I. Perlmutter, E.E. Fetz (2008) Direct control of paralysed muscles by cortical neurons. Nature 456: 639-642.
119.
Mulliken, G.H., S. Musallam, R.A. Andersen (2008) Decoding trajectories from posterior parietal cortex ensembles. J Neurosci 28: 12913-12926.
120.
Nghiem, B.T., I.C. Sando, R.B. Gillespie, B.L. McLaughlin, G.J. Gerling, N.B. Langhals, M.G. Urbanchek, P.S. Cederna (2015) Providing a sense of touch to prosthetic hands. Plast Reconstr Surg 135: 1652-1663.
121.
Norton, J.J., D.S. Lee, J.W. Lee, W. Lee, O. Kwon, P. Won, S.Y. Jung, H. Cheng, J.W. Jeong, A. Akce, S. Umunna, I. Na, Y.H. Kwon, X.Q. Wang, Z. Liu, U. Paik, Y. Huang, T. Bretl, W.H. Yeo, J.A. Rogers (2015) Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc Natl Acad Sci USA 112: 3920-3925.
122.
O'Doherty, J.E., M.A. Lebedev, Z. Li, M.A. Nicolelis (2012) Virtual active touch using randomly patterned intracortical microstimulation. IEEE Trans Neural Syst Rehabil Eng 20: 85-93.
123.
Ofner, P., G.R. Muller-Putz (2015) Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. IEEE Trans Biomed Eng 62: 972-981.
124.
Onose, G., C. Grozea, A. Anghelescu, C. Daia, C.J. Sinescu, A.V. Ciurea, T. Spircu, A. Mirea, I. Andone, A. Spanu, C. Popescu, A.S. Mihaescu, S. Fazli, M. Danoczy, F. Popescu (2012) On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord 50: 599-608.
125.
Ordonez, J.S., Pikov, V. Wiggins, H. Stieglitz, T., Rickert, J., Schuettler, M. (2014) Cuff electrodes for very small diameter nerves - prototyping and first recordings in vivo. Engineering in Medicine and Biology Society (EMBC), 36th Annual International Conference of the IEEE. Chicago, pp. 6846-6849.
126.
Park, A.H., S.H. Lee, C. Lee, J. Kim, H.E. Lee, S.B. Paik, K.J. Lee, D. Kim (2016) Optogenetic mapping of functional connectivity in freely moving mice via insertable wrapping electrode array beneath the skull. ACS Nano 10: 2791-2802.
127.
Park, S., R.A. Koppes, U.P. Froriep, X. Jia, A.K. Achyuta, B.L. McLaughlin, P. Anikeeva (2015a) Optogenetic control of nerve growth. Sci Rep 5: 9669.
128.
Park, S.I., D.S. Brenner, G. Shin, C.D. Morgan, B.A. Copits, H.U. Chung, M.Y. Pullen, K.N. Noh, S. Davidson, S.J. Oh, J. Yoon, K.I. Jang, V.K. Samineni, M. Norman, J.G. Grajales-Reyes, S.K. Vogt, S.S. Sundaram, K.M. Wilson, J.S. Ha, R. Xu, T. Pan, T.I. Kim, Y. Huang, M.C. Montana, J.P. Golden, M.R. Bruchas, R.W. Gereau, J.A. Rogers (2015b) Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 33: 1280-1286.
129.
Pashaie, R., P. Anikeeva, J.H. Lee, R. Prakash, O. Yizhar, M. Prigge, D. Chander, T.J. Richner, J. Williams (2014) Optogenetic brain interfaces. IEEE Rev Biomed Eng 7: 3-30.
130.
Peckham, P.H., J.S. Knutson (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7: 327-360.
131.
Penfield, W., H.H. Jasper (1954) Epilepsy and the Functional Anatomy of the Human Brain. Boston, Little.
132.
Piangerelli, M., M. Ciavarro, A. Paris, S. Marchetti, P. Cristiani, C. Puttilli, N. Torres, A.L. Benabid, P. Romanelli (2014) A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge. Front Neurol 5: 156.
133.
Plachta, D.T.T., M. Gierthmuehlen, O. Cota, F. Boeser, T. Stieglitz (2013) Baroloop: using a multichannel cuff electrode and selective stimulation to reduce blood pressure. Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE. Osaka, pp 755-758.
134.
Polikov, V.S., P.A. Tresco, W.M. Reichert (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148: 1-18.
135.
Poo, M.M., K.R. Robinson (1977) Electrophoresis of concanavalin A receptors along embryonic muscle-cell membrane. Nature 265: 602-605.
136.
Popovic, M.B. (2003) Control of neural prostheses for grasping and reaching. Med Eng Phys 25: 41-50.
137.
Popovic, M.B., D.B. Popovic, T. Sinkjaer, A. Stefanovic, L. Schwirtlich (2003) Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. J Rehabil Res Dev 40: 443-453.
138.
Prasad, A., Q.S. Xue, V. Sankar, T. Nishida, G. Shaw, W.J. Streit, J.C. Sanchez (2012) Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 9: 056015.
139.
Prodanov, D., J. Delbeke (2016) Mechanical and biological interactions of implants with the brain and their impact on implant design. Front Neurosci 10: 11.
140.
Ragnarsson, K.T. (2008) Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord 46: 255-274.
141.
Rajnicek, A.M., L.E. Foubister, C.D. McCaig (2006) Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. J Cell Sci 119: 1736-1745.
142.
Rajnicek, A.M., N.A. Gow, C.D. McCaig (1992) Electric field-induced orientation of rat hippocampal neurones in vitro. Exp Physiol 77: 229-232.
143.
Rattay, F., K. Minassian, M.R. Dimitrijevic (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2 - quantitative analysis by computer modeling. Spinal Cord 38: 473-489.
144.
Ren, J., D.J. Chew, S. Biers, N. Thiruchelvam (2016) Electrical nerve stimulation to promote micturition in spinal cord injury patients: a review of current attempts. Neurourol Urodyn 35: 365-370.
145.
Renshaw, B., A. Forbes, B.R. Morison (1940) Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J Neurophysiol 3: 74-105.
146.
Rubehn, B., C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz (2009) A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng 6: 036003.
147.
Saxena, T., L. Karumbaiah, E.A. Gaupp, R. Patkar, K. Patil, M. Betancur, G.B. Stanley, R.V. Bellamkonda (2013) The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials 34: 4703-4713.
148.
Sayenko, D.G., C. Angeli, S.J. Harkema, V.R. Edgerton, Y.P. Gerasimenko (2014) Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J Neurophysiol 111: 1088-1099.
149.
Schmidt, S., K. Horch, R. Normann (1993) Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J Biomed Mater Res 27: 1393-1399.
150.
Seker, E., Y. Berdichevsky, M.R. Begley, M.L. Reed, K.J. Staley, M.L. Yarmush (2010) The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 21: 125504.
151.
Seymour, J.P., D.R. Kipke (2007) Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28: 3594-3607.
152.
Shapiro, S. (2014) A review of oscillating field stimulation to treat human spinal cord injury. World Neurosurg 81: 830-835.
153.
Shapiro, S., R. Borgens, R. Pascuzzi, K. Roos, M. Groff, S. Purvines, R.B. Rodgers, S. Hagy, P. Nelson (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2: 3-10.
154.
Shechter, R., A. London, C. Varol, C. Raposo, M. Cusimano, G. Yovel, A. Rolls, M. Mack, S. Pluchino, G. Martino, S. Jung, M. Schwartz (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6: e1000113.
155.
Shendkar, C., P.K. Lenka, A. Biswas, R. Kumar, M. Mahadevappa (2015) Design and development of a low-cost biphasic charge-balanced functional electric stimulator and its clinical validation. Healthc Technol Lett 2: 129-134.
156.
Smith, J.R., A.H. Nevis, G.H. Collins (1967) Polarization impedance of stainless steel bipolar electrodes in brain. Exp Neurol 18: 287-299.
157.
Song, B., M. Zhao, J.V. Forrester, C.D. McCaig (2000) Wound-induced electric fields promote early sprouting of corneal nerves. J Physiol Lond 528P: 79P.
158.
Speier, W., A. Deshpande, N. Pouratian (2015) A method for optimizing EEG electrode number and configuration for signal acquisition in P300 speller systems. Clin Neurophysiol 126: 1171-1177.
159.
Stewart, R., L. Erskine, C.D. Mccaig (1995) Calcium-channel subtypes and intracellular calcium stores modulate electric field-stimulated and field-oriented nerve growth. Dev Biol 171: 340-351.
160.
Stroh, A., H.C. Tsai, L.P. Wang, F. Zhang, J. Kressel, A. Aravanis, N. Santhanam, K. Deisseroth, A. Konnerth, M.B. Schneider (2011) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29: 78-88.
161.
Sunshine, M.D., F.S. Cho, D.R. Lockwood, A.S. Fechko, M.R. Kasten, C.T. Moritz (2013) Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury. J Neural Eng 10: 036001.
162.
Tabot, G.A., J.F. Dammann, J.A. Berg, F.V. Tenore, J.L. Boback, R.J. Vogelstein, S.J. Bensmaia (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci USA 110: 18279-18284.
163.
Tan, D.W., M.A. Schiefer, M.W. Keith, J.R. Anderson, J. Tyler, D.J. Tyler (2014) A neural interface provides long-term stable natural touch perception. Sci Transl Med 6: 257ra138.
164.
Taylor, D.M., S.I. Tillery, A.B. Schwartz (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296: 1829-1832.
165.
Thompson, D.M., A.N. Koppes, J.G. Hardy, C.E. Schmidt (2014) Electrical stimuli in the central nervous system microenvironment. Annu Rev Biomed Eng 16: 397-430.
166.
Tian, B., J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane, C.M. Lieber (2012) Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 11: 986-994.
167.
Velliste, M., S. Perel, M.C. Spalding, A.S. Whitford, A.B. Schwartz (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453: 1098-1101.
168.
Viventi, J., D.H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco, Y.S. Kim, A.E. Avrin, V.R. Tiruvadi, S.W. Hwang, A.C. Vanleer, D.F. Wulsin, K. Davis, C.E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J.A. Rogers, B. Litt (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14: 1599-1605.
169.
Vlachos, I., T. Deniz, A. Aertsen, A. Kumar (2016) Recovery of dynamics and function in spiking neural networks with closed-loop control. PLoS Comput Biol 12: e1004720.
170.
von Zitzewitz, J., L. Asboth, N. Fumeaux, A. Hasse, L. Baud, H. Vallery, G. Courtine (2016) A neurorobotic platform for locomotor prosthetic development in rats and mice. J Neural Eng 13: 026007.
171.
Ware, T., D. Simon, C. Liu, T. Musa, S. Vasudevan, A. Sloan, E.W. Keefer, R.L. Rennaker, W. Voit (2014) Thiol-ene/acrylate substrates for softening intracortical electrodes. J Biomed Mater Res B Appl Biomater 102: 1-11.
172.
Weick, J.P., M.A. Johnson, S.P. Skroch, J.C. Williams, K. Deisseroth, S.C. Zhang (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28: 2008-2016.
173.
Wenger, N., E.M. Moraud, J. Gandar, P. Musienko, M. Capogrosso, L. Baud, C.G. Le Goff, Q. Barraud, N. Pavlova, N. Dominici, I.R. Minev, L. Asboth, A. Hirsch, S. Duis, J. Kreider, A. Mortera, O. Haverbeck, S. Kraus, F. Schmitz, J. DiGiovanna, R. van den Brand, J. Bloch, P. Detemple, S.P. Lacour, E. Bezard, S. Micera, G. Courtine (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22: 138-145.
174.
Wenger, N., E.M. Moraud, S. Raspopovic, M. Bonizzato, J. DiGiovanna, P. Musienko, M. Morari, S. Micera, G. Courtine (2014) Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med 6: 255ra133.
175.
Weremfo, A., P. Carter, D.B. Hibbert, C. Zhao (2015) Investigating the interfacial properties of electrochemically roughened platinum electrodes for neural stimulation. Langmuir 31: 2593-2599.
176.
Wolpaw, J.R., D.J. McFarland (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101: 17849-17854.
177.
Wolpaw, J.R., D.J. McFarland, G.W. Neat, C.A. Forneris (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78: 252-259.
178.
Wood, M.D., R.K. Willits (2009) Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements. J Neural Eng 6: 046003.
179.
Wu, H., H. Ghekiere, D. Beeckmans, T. Tambuyzer, K. van Kuyck, J.M. Aerts, B. Nuttin (2015) Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat. Sci Rep 4: 9921.
180.
Xie, C., J. Liu, T.M. Fu, X. Dai, W. Zhou, C.M. Lieber (2015) Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat Mater 14: 1286-1292.
181.
Yan, X., J. Liu, J. Huang, M. Huang, F. He, Z. Ye, W. Xiao, X. Hu, Z. Luo (2014) Electrical stimulation induces calcium-dependent neurite outgrowth and immediate early genes expressions of dorsal root ganglion neurons. Neurochem Res 39: 129-141.
182.
Yeom, H.G.K., J.S. Kim, C.K. Chung (2013) Decoding three-dimensional arm movements for brain-machine interface. Brain-Computer Interface (BCI), 2013 International Winter Workshop, pp 43-45.
183.
Yoshida, K., K. Jovanovic, R.B. Stein (2000) Intrafascicular electrodes for stimulation and recording from mudpuppy spinal roots. J Neurosci Methods 96: 47-55.
184.
Young, W. (2015) Electrical stimulation and motor recovery. Cell Transplant 24: 429-446.
185.
Zhang, F., A.M. Aravanis, A. Adamantidis, L. de Lecea, K. Deisseroth (2007a) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8: 577-581.
186.
Zhang, F., L.-P. Wang, E.S. Boyden, K. Deisseroth (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3: 785-792.
187.
Zhang, F., L.-P. Wang, M. Brauner, J.F. Liewald, K. Kay, N. Watzke, P.G. Wood, E. Bamberg, G. Nagel, A. Gottschalk (2007b) Multimodal fast optical interrogation of neural circuitry. Nature 446: 633-639.
188.
Zhong, Y., R.V. Bellamkonda (2007) Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 1148: 15-27.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.