Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Open Access Gateway

Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice

Li X.a, b · Han D.a, b · Tian Z.c · Gao B.a · Fan M.a · Li C.a · Li X.a · Wang Y.b · Ma S.a · Cao F.a, b

Author affiliations

aDepartment of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, bDepartment of Cardiology, Chinese PLA General Hospital, Beijing, cDepartment of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China

Corresponding Author

Feng Cao, MD, PhD

Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, (China)

Tel. +86-10-55499138, E-Mail wind8828@gmail.com

Related Articles for ""

Cell Physiol Biochem 2016;39:1521-1536

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Aims: Myocardial interstitial fibrosis is a major histologic landmark resulting in cardiac dysfunction after myocardial infarction (MI). Activation of cannabinoid receptor type II (CB2 receptor) have been demonstrated to reduce fibrosis in hepatic cirrhotic rat. However, the anti-fibrotic effect of CB2 receptor activation in infarcted hearts was still unclear. In this study, we aimed to investigate the effects of a CB2 receptor selective agonist AM1241 on myocardial fibrosis post MI in mice. Methods: Echocardiograph was conducted to assess cardiac function. Fibrosis markers such as type I and type III collagen, fibronectin, Plasminogen activator inhibitor(PAI)-1 and tissue inhibitor of metalloprotease(TIMP)-1 were examined by Western blot, while collagens were directly observed by Sirius-red staining. Primary cultured cardiac fibroblasts(CFs) were subjected to hypoxia/serum deprivation (H/SD) injury to simulate ischemic conditions in vivo. Nrf2 siRNA were applied to explore the role of Nrf2 and TGF-β1/Smad3 pathway in this process. Results: Echocardiography showed that AM1241 significantly improved cardiac function, suppressed the expression of fibrosis markers such as collagen I and collagen III, fibronectin, PAI-1 and TIMP-1 in mice with MI. In cardiac fibroblasts subjected to H/SD injury, AM1241 reduced the elevated levels of α-SMA, collagen I and collagen III, which were partially abrogated by the Nrf2 siRNA transfection. Furthermore, AM1241 not only activated and accelerated the translocation of Nrf2 to nucleus, but also inhibited TGF-β1/ Smad3 pathway in an Nrf2 dependent manner. Conclusion: CB2 receptor agonist AM1241 alleviated myocardial interstitial fibrosis via Nrf2 -mediated down-regulation of TGF-β1/Smad3 pathway, which suggested that CB2 receptor activation might represent a promising target for retarding cardiac fibrosis after MI.

© 2016 The Author(s) Published by S. Karger AG, Basel


  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S: Heart disease and stroke statistics-2016 update: A report from the american heart association. Circulation 2016;133:e38-e360.
  2. Jugdutt BI: Limiting fibrosis after myocardial infarction. N Engl J Med 2009;360:1567-1569.
  3. de Haas HJ, Arbustini E, Fuster V, Kramer CM, Narula J: Molecular imaging of the cardiac extracellular matrix. Circ Res 2014;114:903-915.
  4. Tamargo J, López-Sendón J: Novel therapeutic targets for the treatment of heart failure. Nat Rev Drug Discov 2011;10:536-555.
  5. Di Marzo V, Bifulco M, De Petrocellis L: The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004;3:771-784.
  6. Munoz-Luque J, Ros J, Fernandez-Varo G, Tugues S, Morales-Ruiz M, Alvarez CE, Friedman SL, Arroyo V, Jimenez W: Regression of fibrosis after chronic stimulation of cannabinoid cb2 receptor in cirrhotic rats. J Pharmacol Exp Ther 2008;324:475-483.
  7. Akhmetshina A, Dees C, Busch N, Beer J, Sarter K, Zwerina J, Zimmer A, Distler O, Schett G, Distler JH: The cannabinoid receptor cb2 exerts antifibrotic effects in experimental dermal fibrosis. Arthritis Rheum 2009;60:1129-1136.
  8. Hochhauser E, Lahat E, Sultan M, Pappo O, Waldman M, Sarne Y, Shainberg A, Gutman M, Safran M, Ari ZB: Ultra low dose delta 9-tetrahydrocannabinol protects mouse liver from ischemia reperfusion injury. Cell Physiol Biochem 2015;36:1971-1981.
  9. Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, Bátkai S, Gao B, Haskó G, Pacher P: Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 2010;48:457-467.
  10. Rajesh M, Pan H, Mukhopadhyay P, Bátkai S, Osei-Hyiaman D, Haskó G, Liaudet L, Gao B, Pacher P: Pivotal advance: Cannabinoid-2 receptor agonist hu-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 2007;82:1382-1389.
  11. Wang Y, Ma S, Wang Q, Hu W, Wang D, Li X, Su T, Qin X, Zhang X, Ma K, Chen J, Xiong L, Cao F: Effects of cannabinoid receptor type 2 on endogenous myocardial regeneration by activating cardiac progenitor cells in mouse infarcted heart. Sci China Life sci 2014;57:201-208.
  12. Zheng D, Dong S, Li T, Yang F, Yu X, Wu J, Zhong X, Zhao Y, Wang L, Xu C, Lu F, Zhang W: Exogenous hydrogen sulfide attenuates cardiac fibrosis through reactive oxygen species signal pathways in experimental diabetes mellitus models. Cell Physiol Biochem 2015;36:917-929.
  13. Bache RJ, Chen Y: Nox2-induced myocardial fibrosis and diastolic dysfunction: Role of the endothelium. J Am Coll Cardiol 2014;63:2742-2744.
  14. Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J: Tgf-beta signaling in vascular fibrosis. Cardiovasc Res 2007;74:196-206.
  15. Kim MJ, Park SA, Kim CH, Park SY, Kim JS, Kim DK, Nam JS, Sheen YY: Tgf-beta type i receptor kinase inhibitor ew-7197 suppresses cholestatic liver fibrosis by inhibiting hif1alpha-induced epithelial mesenchymal transition. Cell Physiol Biochem 2016;38:571-588.
  16. He T, Bai X, Yang L, Fan L, Li Y, Su L, Gao J, Han S, Hu D: Loureirin b inhibits hypertrophic scar formation via inhibition of the tgf-beta1-erk/jnk pathway. Cell Physiol Biochem 2015;37:666-676.
  17. Howden R: Nrf2 and cardiovascular defense. Oxid Med Cell Longev 2013;2013:104308.
  18. Liu W, Wang B, Wang T, Liu X, He X, Liu Y, Li Z, Zeng H: Ursodeoxycholic acid attenuates acute aortic dissection formation in angiotensin ii-infused apolipoprotein e-deficient mice associated with reduced ros and increased nrf2 levels. Cell Physiol Biochem 2016;38:1391-1405.
  19. Wang Y, Li C, Cheng K, Zhang R, Narsinh K, Li S, Li X, Qin X, Zhang R, Li C, Su T, Chen J, Cao F: Activation of liver x receptor improves viability of adipose-derived mesenchymal stem cells to attenuate myocardial ischemia injury through tlr4/nf-kappab and keap-1/nrf-2 signaling pathways. Antioxid Redox Signal 2014;21:2543-2557.
  20. Zhou S, Sun W, Zhang Z, Zheng Y: The role of nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid Med Cell Longev 2014;2014:260429.
  21. LiX-H, Li C-Y, Xiang Z-G, Hu J-J, Lu J-M, Tian R-B, Jia W: Allicin ameliorates cardiac hypertrophy and fibrosis through enhancing of nrf2 antioxidant signaling pathways. Cardiovasc Drugs Ther 2012;26:457-465.
  22. Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ: A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 2010;107:1445-1453.
  23. Dubey RK, Gillespie DG, Mi Z, Jackson EK: Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: Role of a2b receptors. Circulation 1997;96:2656-2666.
  24. Chen X, Liu G, Zhang W, Zhang J, Yan Y, Dong W, Liang E, Zhang Y, Zhang M: Inhibition of mef2a prevents hyperglycemia-induced extracellular matrix accumulation by blocking akt and tgf-β1/smad activation in cardiac fibroblasts. Int J Biochem Cell Biol 2015;69:52-61.
  25. Han D, Huang W, Li X, Gao L, Su T, Li X, Ma S, Liu T, Li C, Chen J, Gao E, Cao F: Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the sirt1 signaling pathway. J Pineal Res 2016;60:178-192.
  26. Pan Q, Qin X, Ma S, Wang H, Cheng K, Song X, Gao H, Wang Q, Tao R, Wang Y, Li X, Xiong L, Cao F: Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts. Theranostics 2014;4:475-486.
  27. Palazuelos J, Ortega Z, Diaz-Alonso J, Guzman M, Galve-Roperh I: Cb2 cannabinoid receptors promote neural progenitor cell proliferation via mtorcl signaling. J Biol Chem 2012;287:1198-1209.
  28. Yeh YH, Kuo CT, Chang GJ, Chen YH, Lai YJ, Cheng ML, Chen WJ: Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via akt/nrf2/heme oxygenase-1 pathway. J Mol Cell Cardiol 2015;82:84-92.
  29. van Nieuwenhoven FA, Turner NA: The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 2013;58:182-188.
  30. Walters DM, Cho H-Y, Kleeberger SR: Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: A potential role for nrf2. Antioxid Redox Signal 2008;10:321-332.
  31. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA: Controversies in ventricular remodelling. Lancet 2006;367:356-367.
  32. Cohn JN, Ferrari R, Sharpe N: Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol 2000;35:569-582.
  33. Li W, Yan S, Zhao J, Ding X, Zhang S, Wang D, Liu L, Peng W, Li H, Wang D, Liu Z, Li Y: Metoprolol inhibits cardiac apoptosis and fibrosis in a canine model of chronic obstructive sleep apnea. Cell Physiol Biochem 2015;36:1131-1141.
  34. Li Q, Wang F, Zhang Y-M, Zhou J-J, Zhang Y: Activation of cannabinoid type 2 receptor by jwhl33 protects heart against ischemia/reperfusion-induced apoptosis. Cell Physiol Biochem 2013;31:693-702.
  35. Duerr GD, Heinemann JC, Suchan G, Kolobara E, Wenzel D, Geisen C, Matthey M, Passe-Tietjen K, Mahmud W, Ghanem A: The endocannabinoid-cb2 receptor axis protects the ischemic heart at the early stage of cardiomyopathy. Basic Res Cardiol 2014;109:1-15.
  36. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J: Myocardial remodeling after infarction: The role of myofibroblasts. Nat Rev Cardiol 2010;7:30-37.
  37. van Nieuwenhoven FA, Turner NA: The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 2013;58:182-188.
  38. Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, Feng C, Wang CQ, Zhao YF, Li PF: Apf lncrna regulates autophagy and myocardial infarction by targeting mir-188-3p. Nat Commun 2015;6:6779.
  39. Zhao X, Wang K, Liao Y, Zeng Q, Li Y, Hu F, Liu Y, Meng K, Qian C, Zhang Q, Guan H, Feng K, Zhou Y, Du Y, Chen Z: Microrna-101a inhibits cardiac fibrosis induced by hypoxia via targeting tgfbetari on cardiac fibroblasts. Cell Physiol Biochem 2015;35:213-226.
  40. Defer N, Wan J, Souktani R, Escoubet B, Perier M, Caramelle P, Manin S, Deveaux V, Bourin MC, Zimmer A, Lotersztajn S, Pecker F, Pavoine C: The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy. FASEB J 2009;23:2120-2130.
  41. Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M, Cui T: Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vase Biol 2009;29:1843-1850.
  42. Hafstad AD, Nabeebaccus AA, Shah AM: Novel aspects of ros signalling in heart failure. Basic Res Cardiol 2013;108:359.
  43. Huynh K, Bernardo BC, McMullen JR, Ritchie RH: Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014;142:375-415.
  44. Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y: Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-betal in hypertensive rats. Mol Cell Biochem 2008;317:43-50.
  45. Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, Yamamoto M: Physiological significance of reactive cysteine residues of keapl in determining nrf2 activity. Mol Cell Biol 2008;28:2758-2770.
  46. Xu M, Li XX, Wang L, Wang M, Zhang Y, Li PL: Contribution of nrf2 to atherogenic phenotype switching of coronary arterial smooth muscle cells lacking cd38 gene. Cell Physiol Biochem 2015;37:432-444.
  47. Li S, Fan Q, He S, Tang T, Liao Y, Xie J: Microrna-21 negatively regulates treg cells through a tgf-beta1/smad-independent pathway in patients with coronary heart disease. Cell Physiol Biochem 2015;37:866-878.
  48. Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin DB: Latent tgf-beta binding proteins. Int J Biochem Cell Biol 2005;37:38-41.
  49. Qi HP, Wang Y, Zhang QH, Guo J, Li L, Cao YG, Li SZ, Li XL, Shi MM, Xu W, Li BY, Sun HL: Activation of peroxisome proliferator-activated receptor gamma (ppargamma) through nf-kappab/brg1 and tgf-beta1 pathways attenuates cardiac remodeling in pressure-overloaded rat hearts. Cell Physiol Biochem 2015;35:899-912.
  50. Sun C, Li S, Li D: Sulforaphane mitigates muscle fibrosis in mdx mice via nrf2-mediated inhibition of tgf-beta/smad signaling. J Appl Physiol (1985) 2016;120:377-390.
  51. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ: Nadph oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009;15:1077-1081.
  52. Liu RM, Gaston Pravia KA: Oxidative stress and glutathione in tgf-beta-mediated fibrogenesis. Free Radic Biol Med 2010;48:1-15.
  53. Black D, Lyman S, Qian T, Lemasters JJ, Rippe RA, Nitta T, Kim J-S, Behrns KE: Transforming growth factor beta mediates hepatocyte apoptosis through smad3 generation of reactive oxygen species. Biochimie 2007;89:1464-1473.
  54. Yao BB, Mukherjee S, Fan Y, Garrison TR, Daza AV, Grayson GK, Hooker BA, Dart MJ, Sullivan JP, Meyer MD: In vitro pharmacological characterization of am1241: A protean agonist at the cannabinoid cb2 receptor? Br J Pharmacol 2006;149:145-154.
  55. Stratton R, Rajkumar V, Ponticos M, Nichols B, Shiwen X, Black CM, Abraham DJ, Leask A: Prostacyclin derivatives prevent the fibrotic response to tgf-beta by inhibiting the ras/mek/erk pathway. FASEB J 2002;16:1949-1951.
  56. Peake BF, Nicholson CK, Lambert JP, Hood RL, Amin H, Amin S, Calvert JW: Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating nrf2 signaling in an erk-dependent manner. Am J Physiol Heart Circ Physiol 2013;304:H1215-H1224.
  57. Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A, Vancheri C: Tgf-beta 1 targets the gsk-3 beta /beta-catenin pathway via erk activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 2008;57:274-282.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Accepted: August 04, 2016
Published online: September 12, 2016
Issue release date: September 2016

Number of Print Pages: 16
Number of Figures: 8
Number of Tables: 0

ISSN: 1015-8987 (Print)
eISSN: 1421-9778 (Online)

For additional information: https://www.karger.com/CPB

Open Access License / Drug Dosage / Disclaimer

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.