Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Qualitative and Quantitative Analysis of Primary Neocortical Areas in Selected Mammals

van Kann E.a · Cozzi B.b · Hof P.R.c · Oelschläger H.H.A.a

Author affiliations

aDepartment of Anatomy III (Dr. Senckenbergische Anatomie), Medical Faculty, Johann Wolfgang Goethe University, Frankfurt, Germany; bDepartment of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy; cFishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, N.Y., USA

Related Articles for ""

Brain Behav Evol 2017;90:193-210

Do you have an account?

Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 9.00 *
EUR 8.00 *
USD 9.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: May 29, 2016
Accepted: May 10, 2017
Published online: July 29, 2017
Issue release date: November 2017

Number of Print Pages: 18
Number of Figures: 6
Number of Tables: 6

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: https://www.karger.com/BBE

Abstract

The present study focuses on the relationship between neocortical structures and functional aspects in three selected mammalian species. Our aim was to compare cortical layering and neuron density in the projection areas (somatomotor, M1; somatosensory, S1; auditory, A1; and visual, V1; each in a wider sense). Morphological and design-based stereological analysis was performed in the wild boar (Sus scrofa scrofa) as a representative terrestrial hoofed animal (artiodactyl) and the common dolphin (Delphinus delphis) as a highly derived related aquatic mammal (cetartiodactyl). For comparison, we included the human (Homo sapiens) as a well-documented anthropoid primate. In the cortex of many mammals, layer IV (inner granular layer) is the main target of specific thalamocortical inputs while layers III and V are the main origins of neocortical projections. Because the fourth layer is indistinct or mostly lacking in the primary neocortex of the wild boar and dolphins, respectively, we analyzed the adjacent layers III and V in these animals. In the human, all the three layers were investigated separately. The stereological data show comparatively low neuron densities in all areas of the wild boar and high cell counts in the human (as expected), particularly in the primary visual cortex. The common dolphin, in general, holds an intermediate position in terms of neuron density but exhibits higher values than the human in a few layers. With respect to the situation in the wild boar, stereological neuron counts in the dolphin are consistently higher, with a maximum in layer III of the visual cortex. The extended auditory neocortical field in dolphins and the hypertrophic auditory pathway indicate secondary neurobiological adaptations to their aquatic habitat during evolution. The wild boar, however, an omnivorous quadruped terrestrial mammal, shows striking specializations as to the sensorimotor neurobiology of the snout region.

© 2017 S. Karger AG, Basel


References

  1. Adrian ED (1943): Afferent areas in the brain of ungulates. Brain 66:89-103.
  2. Ahnelt PK, Schubert C, Kübber-Heiss A, Schiviz A, Anger E (2006): Independent variation of retinal S and M cone photoreceptor topographies: a survey of four families of mammals. Vis Neurosci 23:429-435.
  3. Andrews RJ, Knight RT, Kirby RP (1990): Evoked potential mapping of auditory and somatosensory cortices in the miniature swine. Neurosci Lett 114:27-31.
  4. Brodmann K (1908): Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Cortexgliederung des Menschen. J Psychol Neurol 10:231-246.
  5. Buhl EH, Oelschläger HA (1986): Ontogenetic development of the nervus terminalis in toothed whales. Evidence for its non-olfactory nature. Anat Embryol 173:285-294.
  6. Butti C, Fordyce RE, Raghanti MA, Gu X, Bonar CJ, Wicinski BA, Wong EW, Roman J, Brake A, Eaves E, Spocter MA, Tang CY, Jacobs B, Sherwood CC, Hof PR (2014): The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology. Anat Rec (Hoboken) 297:670-700.
  7. Butti C, Janeway CM, Townshend C, Wicinski BA, Reidenberg JS, Ridgway SH, Sherwood CC, Hof PR, Jacobs B (2015): The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Brain Struct Funct 220:3339-3368.
  8. Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (2009): Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515:243-259.
  9. Campbell AW (1905): Histological Studies on the Localization of Cerebral Function. Cambridge, Cambridge University Press.
  10. Červený J, Burda H, Ježek M, Kušta T, Husinec V, Nováková P, Hart V, Hartová V, Begall S, Malkemper EP (2017): Magnetic alignment in warthogs Phacochoerus africanus and wild boars Sus scrofa. Mammal Rev 47:1-5.
  11. Cozzi B, Huggenberger S, Oelschläger H (eds) (2017): Anatomy of Dolphins: Insights into Body Structure and Function. Amsterdam, Elsevier, Academic Press, 438 pp.
  12. Craner SL, Ray RH (1991a): Somatosensory cortex of the neonatal pig: I. Topographic organization of the primary somatosensory cortex (SI). J Comp Neurol 306:24-38.
  13. Craner SL, Ray RH (1991b): Somatosensory cortex of the neonatal pig: II. Topographic organization of the secondary somatosensory cortex (SII). J Comp Neurol 306:39-48.
  14. Croney CC, Adams KM, Washington CG, Stricklin WR (2003): A note on visual, olfactory and spatial cue use in foraging behavior of pigs: indirectly assessing cognitive abilities. Applied Animal Behav Sci 83:303-308.
  15. Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhardt G, Hanke W (2012): Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc B 279:663-668.
  16. De Muizon C (2009): L'origine et l'histoire évolutive des Cétacés. Comptes Rendus Palevol 8:295-309.
  17. Eriksen N, Pakkenberg B (2007): Total neocortical cell number in the mysticete brain. Anat Rec 290:83-95.
  18. Frahm HD, Stephan H, Baron G (1984): Comparison of brain structure volumes in insectivora and primates. V. Area striata (AS). J Hirnforsch 25:537-557.
  19. Fung C, Schleicher A, Kowalski T, Oelschläger HHA (2005): Mapping auditory cortex in the La Plata dolphin (Pontoporia blainvillei). Brain Res Bull 66:353-356.
  20. Garey LJ, Leuba G (1986): A quantitative study of neuronal and glial numerical density in the visual cortex of the bottlenose dolphin: evidence for a specialized subarea and changes with age. J Comp Neurol 247:491-496.
  21. Garey LJ, Winkelmann E, Brauer K (1985): Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. J Comp Neurol 240:305-321.
  22. Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR (2013): A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 66:479-506.
  23. Geisler JH, McGowen MR, Yang G, Gatesy J (2011): A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol Biol 11:112.
  24. Gingerich PD (2003): Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29:429-454.
  25. Gingerich PD (2012): Evolution of whales from land to sea. Proc Am Philos Soc 156:309-323.
  26. Gingerich PD, Haq MU, Zalmout IS, Khan IH, Malkani MS (2001): Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239-2242.
  27. Gingerich PD, Wells NA, Russell DE, Shah SMI (1983): Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403-406.
  28. Glezer II (2002): Neural morphology; in Hoelzel AR (ed): Marine Mammal Biology. Malden, Blackwell Science, pp 98-115.
  29. Glezer II, Hof PR, Leranth C, Morgane PJ (1993): Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex 3:249-272.
  30. Gundersen HJG (1986): Stereology of arbitrary particles: a review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3-45.
  31. Heffner RS, Heffner HE (1990): Hearing in domestic pigs (Sus scrofa) and goats (Capra hircus). Hear Res 48:231-240.
  32. Herculano-Houzel S, Lent R (2005): Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518-2521.
  33. Herre W (1986): Sus scrofa Linnaeus - Wildschwein; in Niethammer J, Krapp F (eds): Handbuch der Säugetiere Europas. Wiebelsheim, Aula, vol 2/II, pp 36-66.
  34. Hof PR, Chanis R, Marino L (2005): Cortical complexity in cetacean brains. Anat Rec 287:1142-1152.
  35. Houssaye A, Tafforeau P, de Muizon C, Gingerich PD (2015): Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS One 10:e0118409.
  36. Huggenberger S (2008): The size and complexity of dolphin brains - a paradox? J Mar Biol Assoc UK 88:1103-1108.
  37. Huggenberger S, Rauschmann MA, Vogl TJ, Oelschläger HHA (2009): Functional morphology of the nasal complex in the harbor porpoise (Phocoena phocoena L.). Anat Rec (Hoboken) 292:902-920.
  38. Jarvinen MK, Morrow-Tesch J, McGlone JJ, Powley TL (1998): Effects of diverse developmental environments on neuronal morphology in domestic pigs (Sus scrofa). Dev Brain Res 107:21-31.
  39. Kern A (2012): Der Neokortex der Säugetiere - Evolution und Funktion; thesis, Johann Wolfgang Goethe University, Frankfurt, 249 pp.
  40. Kern A, Seidel K, Oelschläger HHA (2009): The central vestibular complex in dolphins and humans: functional implications of Deiters' nucleus. Brain Behav Evol 73:102-110.
  41. Kern A, Siebert U, Cozzi B, Hof PR, Oelschläger HHA (2011): Stereology of the neocortex in odontocetes: qualitative, quantitative, and functional implications. Brain Behav Evol 77:79-90.
  42. Kesarev VS, Malofeyeva LI, Trykova OV (1977): Ecological specificity of cetacean neocortex. J Hirnforsch 18:447-460.
  43. Knopf JP, Hof PR, Oelschläger HHA (2016): The neocortex of the Indian river dolphins (Genus Platanista): comparative, qualitative and quantitative analysis. Brain, Behav Evol 88:93-110.
  44. Köpf-Maier P (ed) (2000): Wolf-Heidegger's Atlas of Human Anatomy, ed 5. Basel, Karger, vol 2: Head and Neck, Thorax, Abdomen, Pelvis, CNS, Eye, Ear.
  45. Kremers K, López Marulanda J, Hausberger M, Lemasson A (2014): Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields. Naturwissenschaften 101:907-911.
  46. Krubitzer L (2000): Arealization of the neocortex in mammals: genetic and epigenetic contributions to the phenotype. Brain Behav Evol 55:322-335.
  47. Kruska D (1970): Vergleichend cytoarchitektonische Untersuchungen an Gehirnen von Wild- und Hausschweinen. Z Anat Entwicklungsgesch 131:291-324.
  48. Kruska D (1988): Mammalian domestication and its effect on brain structure and behavior; in Jerison HJ, Jerison I (eds): Intelligence and Evolutionary Biology. Berlin, Springer, pp 211-250.
  49. Kruska D (2007): The effects of domestication on brain size; in Kaas JH, Krubitzer LH (eds): Evolution of the Nervous Systems. Amsterdam, Elsevier, Academic Press, vol 3: Mammals, pp 143-153.
  50. Kruska D, Röhrs M (1974): Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z Anat Entwicklungsgesch 144:61-73.
  51. Ladygina TF, Mass AM, Supin AY (1978): Multiple sensory projections in the dolphin cerebral cortex. Zh Vyssh Nerv Deiat Im IP Pavlova 28:1047-1053.
  52. Ladygina TF, Supin AY (1977): Localization of the sensory projection areas in the cerebral cortex of the dolphin, Tursiops truncatus. Zh Evol Biokhim Fiziol 13:712-718.
  53. Ladygina TF, Supin AY (1978): On homology of the different regions of the brain's cortex of cetacea and other mammals; in Sokolov VY (ed): Morskiye Mlekopitayushchiye: Resul'taty I Metody Issledovaniya. Moscow, Izdatel'stvo Nauka, pp 55-66.
  54. Lende RA, Akdikmen S (1968): Motor field in cerebral cortex of the bottlenose dolphin. J Neurosurg 29:495-499.
  55. Lende RA, Welker WI (1972): An unusual sensory area in the cerebral neocortex of the bottlenose dolphin, Tursiops truncatus. Brain Res 45:555-560.
  56. Luo Z-X (2000): Evolution: in search of the whales' sisters. Nature 404:235-239.
  57. Malkemper EP, Oelschläger HHA, Huggenberger S (2012): The dolphin cochlear nucleus: topography, histology and functional implications. J Morphol 273:173-185.
  58. Manger PR (2006): An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev Camb Philos Soc 81:293-338.
  59. Marino L, Butti C, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Lusseau D, McCowan B, Nimchinsky EA, Pack AA, Reidenberg JS, Reiss D, Rendell L, Uhen MD, Van der Gucht E, Whitehead H (2008): A claim in search of evidence: reply to Manger's thermogenesis hypothesis of cetacean brain structure. Biol Rev 83:417-440.
  60. Marino L, Colvin C (2015): Thinking pigs: a comparative review of cognition, emotion, and personality in Sus domesticus. Int J Comp Psychol 28:1-22.
  61. Marshall CD, Hsu RH, Herring SW (2005): Somatotopic organization of perioral musculature innervation within the pig facial motor nucleus. Brain Behav Evol 66:22-34.
  62. Mauget R (1972): Observations sur la reproduction du sanglier (Sus scrofa L.) a l´état sauvage. Ann Biol Anim Biochim Biophys 12:195-202.
  63. Mauget R (1982): Seasonality of Reproduction in the Wild Boar. London, Butterworths Scientific Publications, pp 509-526.
  64. Morgane PJ, Glezer II, Jacobs MS (1988): Visual cortex of the dolphin: an image analysis study. J Comp Neurol 273:3-25.
  65. Morgane PJ, Glezer II (1990): Ultrastructure of synapses and Golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale. Brain Res Bull 24:401-427.
  66. Morgane PJ, Jacobs MS (1972): Comparative anatomy of the cetacean nervous system; in Harrison RJ (ed): Functional Anatomy of Marine Mammals. London, Academic Press, vol 1, pp 117-244.
  67. Morgane PJ, Jacobs MS, Galaburda A (1985): Conservative features of neocortical evolution in dolphin brain. Brain Behav Evol 26:176-184.
  68. Morgane PJ, Jacobs MS, Galaburda A (1986): Evolutionary aspects of cortical organization in the dolphin brain; in Harrison RJ, Bryden M (eds): Research on Dolphins. Oxford, Oxford University Press, pp 71-98.
  69. Morisaka T, Connor RC (2007): Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow-band high frequency clicks in odontocetes. J Evol Biol 20:1439-1458.
  70. Nickel R, Schummer A, Seiferle E (2004): Lehrbuch der Anatomie der Haustiere, ed 4. Stuttgart, Parey, vol 4: Nervensystem. Sinnesorgane. Endokrine Drüsen, p 548.
  71. Nieuwenhuys R (1998): Neocortex; in Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds): The Central Nervous System of Vertebrates. Berlin, Springer, vol 3, pp 1952-2023.
  72. Oelschläger HHA (2008): The dolphin brain - a challenge for synthetic neurobiology. Brain Res Bull 75:450-459.
  73. Oelschläger HA, Buhl EH (1985): Development and rudimentation of the peripheral olfactory system in the harbor porpoise Phocoena phocoena (Mammalia: Cetacea). J Morphol 184:351-360.
  74. Oelschläger HA, Buhl EH, Dann JF (1987): Development of the nervus terminalis in mammals including toothed whales and humans. Ann NY Acad Sci 519:447-464.
  75. Oelschläger HHA, Haas-Rioth M, Fung C, Ridgway SH, Knauth M (2008): Morphology and evolutionary biology of the dolphin (Delphinus sp.) brain-MR imaging and conventional histology. Brain Behav Evol 71:68-86.
  76. Oelschläger HHA, Oelschläger JS (2002): Brain; in Perrin WF, Würsig B, Thewissen JGM (eds): Encyclopedia of Marine Mammals. San Diego, Academic Press, pp 133-158.
  77. Oelschläger HHA, Oelschläger JS (2009): Brain; in Perrin WF, Würsig B, Thewissen JGM (eds): Encyclopedia of Marine Mammals, ed 2. San Diego, Academic Press, pp 134-149.
  78. Pilleri G, Gihr M (1970): The central nervous system of the mysticete and odontocete whales; in Pilleri G (ed): Investigations on Cetacea. Berne, Brain Anatomy Institute, vol 2, pp 89-127.
  79. Plogmann D, Kruska D (1990): Volumetric comparison of auditory structures in the brains of European wild boars (Sus scrofa) and domestic pigs (Sus scrofa f. dom). Brain Behav Evol 35:146-155.
  80. Poth C, Fung C, Güntürkün O, Ridgway SH, Oelschläger HHA (2005): Neuron numbers in sensory cortices of five delphinids compared to a physeterid, the pygmy sperm whale. Brain Res Bull 66:357-360.
  81. Ridgway SH (1990): The central nervous system of the bottlenose dolphin; in Leatherwood S, Reeves RR (eds): The Bottlenose Dolphin. New York, Academic Press, pp 69-97.
  82. Ridgway S, Carder D, Finneran J, Keogh, M, Kamolnick T, Todd M, Goldblatt A (2006): Dolphin continuous auditory vigilance for five days. J Exp Biol 209:3621-3628.
  83. Ridgway SH, Demski LS, Bullock TH, Schwanzel-Fukuda M (1987): The terminal nerve in odontocete cetaceans. Ann NY Acad Sci 519:201-212.
  84. Roth G, Dicke U (2005): Evolution of the brain and intelligence. Trends Cogn Sci 9:250-257.
  85. Schmitz C, Hof PR (2005): Design-based stereology in neuroscience. Neuroscience 130:813-831.
  86. Schwerdtfeger WK, Oelschläger HA, Stephan H (1984): Quantitative neuroanatomy of the brain of the La Plata dolphin, Pontoporia blainvillei. Anat Embryol (Berlin) 170:11-19.
  87. Soucek G, Breit S, König HE, Liebich HG (1999): Zur funktionellen Bedeutung der Muskulatur an der äußeren Nase beim Schwein (Sus scrofa f. domestica). Anat Histol Embryol 28:307-314.
  88. Spinka M (2009): Behavior of pigs; in Jensen P (ed): The Ethology of Domestic Animals. An Introductory Text, ed2. Wallingford, CABI, pp 177-191.
  89. Stephan H, Baron G, Frahm HD (1988): Comparative size of brains and brain components; in Stecklis HD, Erwin J (eds): Comparative Primate Biology. New York, Liss, vol 4: Neurosciences, pp 1-38.
  90. Supin AY, Popov VV, Mass AM (2001): The Sensory Physiology of Aquatic Mammals. Boston, Kluwer Academic Publishers.
  91. Tanosaki M, Ishibashi H, Zhang T, Okada Y (2014): Effective connectivity maps in the swine somatosensory cortex estimated from electrocorticography and validated with intracortical local field potential measurements. Brain Connect 4:100-111.
  92. Thewissen JGM (ed) (1998): The Emergence of Whales. Evolutionary Patterns in the Origin of Cetacea. Advances in Paleobiology. New York, Plenum Press.
  93. Thewissen JGM (2014): The Walking Whales: From Land to Water in Eight Million Years. Oakland, University of California Press.
  94. Thewissen JGM, Fish FE (1997): Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 23:482-490.
  95. Thewissen JGM, Hussain ST, Arif M (1994): Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210-212.
  96. Thewissen JGM, Williams EM (2002): The early radiations of Cetacea (Mammalia): evolutionary pattern and development correlations. Annu Rev Ecol Evol Syst 33:73-90.
  97. Thewissen JGM, Williams EM, Roe LJ, Hussain ST (2001): Skeletons of terrestrial cetaceans and the relationships of whales to artiodactyls. Nature 413:277-281.
  98. Triarhou LC (2007): A proposed number system for the 107 cortical areas of Economo and Koskinas, and Brodmann area correlations. Stereotact Funct Neurosurg 85:204-215.
  99. Uhen MD (2010): The origin(s) of whales. Annu Rev Earth Planet Sci 38:189-219.
  100. Walloe S, Eriksen N, Dabelsteen T, Pakkenberg B (2010): A neurological comparative study of the harp seal (Pagophilus groenlandicus) and harbor porpoise (Phocoena phocoena) brain. Anat Rec (Hoboken) 293:2129-2135.
  101. West MJ, Slomianka L, Gundersen HJG (1991): Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482-497.
  102. Wilson DE, Mittermeier RA (eds) (2011): Handbook of the Mammals of the World. 2. Hoofed Animals. Barcelona, Lynx.
  103. Woolsey CN, Fairman D (1946): Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals. Surgery 19:684-702.
  104. Zilles K (1987): Graue und weisse Substanz des Hirnmantels; in Leonhardt B, Tillmann B, Töndury G, Zilles K (eds): Anatomie des Menschen. Stuttgart, Thieme, vol 3.
  105. Zoeger J, Dunn JR, Fuller M (1981): Magnetic material in the head of the common Pacific dolphin. Science 213:892-894.
  106. Zonderland JJ, Cornelissen L, Wolthuis-Fillerup M, Spoolder HAM (2008): Visual acuity of pigs at different light intensities. Appl Anim Behav Sci 111:28-37.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: May 29, 2016
Accepted: May 10, 2017
Published online: July 29, 2017
Issue release date: November 2017

Number of Print Pages: 18
Number of Figures: 6
Number of Tables: 6

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: https://www.karger.com/BBE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.