The minicolumn is generally considered an elementary unit of the neocortex in all mammalian brains. This essential building block has been affected by changes in the circuitry of the cortex during evolution. Researchers believe that enlargement of the cortical surface occurs through the addition of minicolumns rather than of single neurons. Therefore, minicolumns integrate cortical encephalization with organization. Despite these insights, few studies have analyzed the morphometry of the minicolumn to detect subtle but important differences among the brains of diverse mammals. The notion that minicolumns are essentially unchanged across species is challenged by strong evidence to the contrary. Because they are subject to species-specific variation, they can be used as a way to study evolutionary changes. Unfortunately, comparative studies are marred by a lack of standardized techniques, tissue preparation, cortical regions, or anatomical feature studied. However, recent advances in methodology enable standardized, quantified comparisons of minicolumn morphology.

1.
Aggoun-Aouaoui, D., D.C. Kiper, and G.M. Innocenti (1996) Growth of callosal terminals in primary visual areas of the cat. Eur. J. Neurosci., 8: 1132–1148.
2.
Anderson, B., B.D. Southern, and R.E. Powers (1999) Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. Neuropsych. Neuropsychol. Behav. Neurol., 12: 247–254.
3.
Barone, P., and H. Kennedy (2000) Non-uniformity of neocortex: areal heterogeneity of NADPH-diaphorase reactive neurons in adult Macaque monkeys. Cereb. Cortex, 10: 160–174.
4.
Beaulieu, C. (1993) Numerical data on neocortical neurons in adult rat, with special references to the GABA population. Brain Res., 609: 284–292.
5.
Ben-Yishai, R.R., L. Bar-Or, and H. Sompolinsky (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci., 92: 3844–3848.
6.
Brumberg, J.C., D.J. Pinto, and D.J. Simons (1996) Spatial gradients and inhibitory summation in the rat whisker barrel system. J. Neurophysiol., 76: 130–140.
7.
Budd, J.M., and Z.F. Kisvarday (2001) Local lateral connectivity of inhibitory clutch cells in layer 4 of cat visual cortex (area 17). Exp. Brain Res., 140: 245–250.
8.
Buldyrev, S.V., L. Cruz, T. Gomez-Isla, E. Gomez-Tortosa, S. Havlin S, and R. Le (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc. Nat. Acad. Sci. USA, 97: 5039–5043.
9.
Buxhoeveden, D., and M.F. Casanova (2000) Comparative lateralization patterns in the language area of human, chimpanzee, and rhesus monkey brains. Laterality, 5: 315–330.
10.
Buxhoeveden, D., W. Lefkowitz, P. Loats, and E. Armstrong (1996) The linear organization of cell columns in human and nonhuman anthropoid Tpt cortex. Anat. Embryol., 194: 23–36.
11.
Buxhoeveden, D., K. Semendeferi, and M. Casanova (2002) Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Amer. Assoc. Phys. Anthro., (Suppl 34): 51.
12.
Buxhoeveden, D., A. Switala, and M. Casanova (2000b) Quantitative analysis of cell columns in the cerebral cortex. J. Neurosci. Meth., 97: 7–17.
13.
Buxhoeveden, D., A. Switala, M. Litaker, E. Roy, and M.F. Casanova (2000a) Reduced interneuronal space in schizophrenia. Biol. Psychiatry, 47: 681–682.
14.
Buxhoeveden, D., A. Switala, M. Litaker, E. Roy, and M.F. Casanova (2001a) Lateralization in human planum temporale is absent in nonhuman primates. Brain Behav. Evol., 57: 349–358.
15.
Buxhoeveden, D., A. Switala, E. Roy, and M.F. Casanova (2001b) Morphological differences between minicolumns in human and nonhuman primate cortex. Am. J. Phys. Anthropol., 115: 361–371.
16.
Calvin, W.H. (1998) Competing for Consciousness: How Subconscious Thoughts Cook on the Back Burner. [On-line] http://williamcalvin.com/1990s/1998TucsonConscious.html
17.
Carpenter, M. (1976) Human Neuroanatomy. Williams and Wilkins, Philadelphia PA.
18.
Casanova, M.F., D. Buxhoeveden, and G. Sohol (2000) Brain development and evolution. In Functional Neuroimaging in Child Psychiatry (ed. by M. Ernst and J. Rumsey), Cambridge University Press, Cambridge UK, pp. 113–136.
19.
Casanova, M., D. Buxhoeveden, M. Cohen, A. Switala, and E. Roy (2002c) Minicolumn pathology in dyslexia. Ann. Neurol., in press.
20.
Casanova, M., D. Buxhoeveden, A. Switala, and E. Roy (2002a) Minicolumn pathology in autism. Neurology, 58: 428–432.
21.
Casanova, M., D. Buxhoeveden, A. Switala, and E. Roy (2002b) Asperger’s syndrome and cortical neuropathology. J. Child. Neurol., 17: 142–145.
22.
Constantinidis, C., M.N. Franowicz, and P.S. Goldman-Rakic (2001) Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J. Neurosci., 21: 3646–3655.
23.
Creutzfeldt, O.D. (1977) Generality of the functional structure of the neocortex. Naturwissenschaften 64: 507–517.
24.
Crowley, J.C., and L.C. Katz (1999) Development of ocular dominance columns in the absence of retinal input. Nature Neurosci., 2: 1125–1130.
25.
Crowley, J.C., and L.C. Katz (2000) Early development of ocular dominance columns. Science, 290: 1321–1324.
26.
Crowley, J.C., and L.C. Katz (2002) Ocular dominance development revisited. Curr. Opin. Neurobiol., 12: 104–109.
27.
Deacon, T. W. (1990) Rethinking mammalian brain evolution. Am. Zool., 30: 629–705.
28.
DeFelipe, J. (1999) Chandelier cells and epilepsy. Brain, 122: 1807–1822.
29.
DeFelipe, J., and I. Farinas (1992) The pyramidal neuron of the cerebral cortex morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol., 39: 563–607.
30.
DeFelipe, J., and E.G. Jones (1985) Vertical organization of γ-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex. J. Neurosci., 5: 3246–3260.
31.
DeFelipe, J., S.H.C. Hendry, T. Hashikawa, M. Molinari, and E.G. Jones (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience, 37: 655–673.
32.
DeFelipe, J., S.H.C. Hendry, and E.G. Jones (1989) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res., 503: 49–54.
33.
DelRio, M.R., and J. DeFelipe (1997) Double bouquet cell axons in the human temporal neocortex: relationships to bundles of myelinated axons and colocalization of calretinin and calbindin D-28k immunoreactivities. J. Chem. Neuroanat., 13: 243–225.
34.
Dodt, H.U., G. D’Arcangelo, E. Pestel, and W. Zieglgansberger (1996) The spread of excitation in neocortical columns visualized with infrared-darkfield videomicroscopy. Neuroreport 7: 1553–1558.
35.
Elston, G.N. (2000). Pyramidal cells of the frontal lobe: all the more spinous to think with. J. Neurosci., 20: 1–4.
36.
Elston, G.N., and M.P.G. Rosa (2000) Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory areas of he macaque monkey. J. Neurosci., 20: 1–5.
37.
Elston, G.N., P.R. Manger, and J.D. Pettigrew (1999) Morphology of pyramidal neurons in cytochrome oxidase modules of the S-1 bill representation of the platypus. Brain Behav. Evol., 53: 87–101.
38.
Escobar, M.I., H. Pimenta, V.S. Caviness Jr., M. Jacobson, J.E. Crandall, and K.S. Kosik (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience, 17: 975–989.
39.
Falk, D. (1978) Cerebral asymmetry in Old World monkeys. Acta Anat., 101: 334–339.
40.
Favorov, O.V., and M.E. Diamond (1990) Demonstration of discrete place-defined columns-segregates-in the cat SI. J. Comp. Neurol., 298: 97–112.
41.
Favorov, O.V., and G. Kelly (1994a) Minicolumnar organization within somatosensory cortical segregates I: development of afferent connections. Cereb. Cortex, 4: 408–427.
42.
Favorov, O.V., and G. Kelly (1994b) Minicolumnar organization within somatosensory cortical segregates II: emergent functional properties. Cereb. Cortex, 4: 428–442.
43.
Favorov, O.V., and B.I. Whitsel (1988a) Spatial organization of the peripheral input to area 1 cell columns I: the detection of ‘segregates’. Brain Res. Rev., 13: 25–42.
44.
Favorov, O.V., and B.I. Whitsel (1988b) Spatial organization of the peripheral input to area 1 cell columns II: the forelimb representation achieved by mosaic of segregates. Brain Res. Rev., 13: 43–56.
45.
Feldman, M.L., and A. Peters (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res. 77: 55–76.
46.
Fleischauer, K., H. Petsche, and W. Wittkowski (1972) Vertical bundles of dendrites in the neocortex. Z. Anat. Entwickl. Gesch., 136: 213–223.
47.
Freiwald, W.A., A.K. Kreiter, and W. Singer (1995) Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. Neuroreport, 6: 2348–2352.
48.
Fujita, I., and T. Fujita (1996) Intrinsic connections in the macaque interior temporal cortex. J. Comp. Neurol., 368: 467–486.
49.
Fujita, I., K. Tanaka, M. Ito, and K. Cheng (1992) Columns for visual-features of objects in monkey inferotemporal cortex. Nature, 360: 343–346.
50.
Gabbott, P.L.A., and S.J. Bacon (1996) The organization of dendritic bundles in the prelimbic cortex (area 32) of the rat. Brain Res., 730: 75–86.
51.
Galaburda, A.M., M. LeMay, and T.L. Kemper (1978) Right-left asymmetries in the brain, structural differences between the hemispheres may underlie cerebral dominance. Science, 199: 852–856.
52.
Galuske, R.A., W. Schlote., H. Bratzke, and W. Singer (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science, 289: 1946–1949.
53.
Gannon, P., R.L. Holloway, D.C. Broadfield, and A.R. Braun (1998) Asymmetry of chimpanzee temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279: 220–222.
54.
Gibson, K.R., D. Rumbaugh, and M. Beran (2001) Bigger is better: primate brain size in relationship to cognition. In Evolutionary Anatomy of the Primate Cerebral Cortex (ed. by D. Falk and K.R. Gibson), Cambridge University Press, Cambridge UK, pp. 79–97.
55.
Goldman, P.S., and W.J. Nauta (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res., 122: 393–413.
56.
Goldman-Rakic, P.S., and M.L. Schwartz (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science, 216: 755–757.
57.
Gray, C.M., P. Konig, A.K. Engel, and W. Singer (1989) Oscillatory responses in cat visual cortex inter-columnar synchronization which reflects global stimulus properties. Nature, 338: 334–337.
58.
Gupta, A., Y. Wang, and H. Markram (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287: 273–278.
59.
Gustafsson, L. (1997) Inadequate cortical feature maps: a neural circuit theory of autism. Biol. Psych., 42: 1138–1147.
60.
Herschkowitz, N., J. Kagan, and K. Zilles (1999) Neurobiological bases of behavioral development in the second year. Neuropediatrics, 30: 221–230.
61.
Hofman, M.A. (2001) Brain evolution in hominids: are we at the end of the road? In Evolutionary Anatomy of he Primate Cerebral Cortex (ed. D. Falk and K. R. Gibson), Cambridge University Press, Cambridge UK, pp. 113–127.
62.
Holthoff, K., and O.W. Witte (1996) Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J. Neurosci., 16: 2740–2749.
63.
Holthoff, K., H.U. Dodt, and O.W. Witte (1994) Changes in intrinsic optical signal of rat neocortical slices following afferent stimulation. Neurosci. Let., 180: 227–230.
64.
Hopkins, W.D., L. Marino, J.K. Rilling, and L.A. MacGregor (1998) Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). Neuroreport, 9: 2913–2918.
65.
Hubener, M., D. Shoham, A. Grinvald, and T. Bonhoeffer (1997) Spatial relationships among three columnar systems in cat area 17. J. Neurosci., 17: 9270–9284.
66.
Hustler, J.J., and M.S. Gazzaniga (1996). Acetylcholinesterase staining in human auditory cortices: regional variation of structural features. Cereb. Cortex., 6: 260–270.
67.
Jin, X., P.H. Mathers, G. Szabo, Z. Katarova, and A. Agmon (2001) Vertical bias in dendritic trees of non-pyramidal neocortical neurons expressing GAD67-GFP In Vitro. Cereb. Cortex, 11: 666–678.
68.
Jones, E.G. (2000) Microcolumns in the cerebral cortex. Proc. Nat. Acad. Sci. USA, 97: 5019–5021.
69.
Jones, E.G., and H. Burton (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J. Comp. Neurol., 154: 395–432.
70.
Juliano, S., and B.L. Whitsel (1987) A combined 2-deoxyglucose and neurophysiological study of primate somatosensory cortex. J. Comp. Neurol., 263: 514–525.
71.
Juliano, S.L., S.L. Palmer, R.V. Sonty, S. Noctor, and G.F. Hill 2nd (1996) Development of local connections in ferret somatosensory cortex. J. Comp. Neurol., 374: 259–277.
72.
Kaas, J.H., R. J. Nelson, M. Sur, and M. M. Merzenich (1981) Organization of somatosensory cortex in primates. In The Organization of the Cerebral Cortex (ed. by F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis), MIT Press, Cambridge MA, pp. 237–261.
73.
Kandel, E., J.H. Schwartz, and T.M. Jessell (eds.) (2000) Principles of Neural Science (4th ed.). McGraw-Hill, New York.
74.
Katona, I., L. Acsady, and T.F. Freund (1999) Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience, 88: 37–55.
75.
Keller, A. (1993) Intrinsic synaptic organization of the motor cortex. Cereb. Cortex 3: 430–441.
76.
Kohn, A., A. Pinheiro, M. A. Tommerdahl, and B. L. Whitsel (1997) Optical imaging in vitro provides evidence for the minicolumnar nature of cortical response. Neuroreport, 8: 3513–3518.
77.
Kornack, D.R., and P. Rakic (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron, 15: 311–321.
78.
Kozloski, J., F. Hamzei-Sichani, and R. Yuste (2001) Stereotyped position of local synaptic targets in neocortex. Science, 293: 868–972.
79.
Krimer, L.S., and P.S. Goldman-Rakic (2001). Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J. Neurosci., 21: 3788–3796.
80.
Kritzer, M.F., and P.S. Goldman-Rakic (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J. Comp. Neurol., 359: 131–143.
81.
Krmpotic-Nemanic, J., I. Kostovic, and D. Nemanic (1984) Prenatal and perinatal development of radial cell columns in the human auditory cortex. Acta Oto-Laryngol., 97: 489–495.
82.
Krubitzer, L. (1995) The organization of neocortex in mammals: are species differences really so different? Trends Neurosci., 18: 408–417.
83.
Laaris, N., G.C. Carlson, and A. Keller (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J. Neurosci., 20: 1529–1537.
84.
Landing, B.H., W.R. Shankle, and J. Hara (1998) Constructing the human cerebral cortex during infancy and childhood: types and numbers of cortical columns and numbers of neurons in such columns at different age-points. Acta Paediatrica Japonica, 40: 530–543.
85.
Lee, C.J., and B.L. Whitsel (1992) Mechanisms underlying somatosensory cortical dynamics: 1. In vivo studies. Cereb. Cortex, 2: 81–106.
86.
Lee, C.J., B.L. Whitsel, and M. Tommerdahl (1992) Mechanisms underlying somatosensory cortical dynamics: II. In vitro studies. Cereb. Cortex, 2: 107–133.
87.
Leise, E.M. (1990) Modular constructs of nervous systems: A basic principle of design for vertebrates and invertebrates. Brain Res. Rev., 15: 1–23.
88.
LeMay, M. (1976) Morphological asymmetry in modern man, fossil man, and non-human primates. N.Y. Acad. Sci., 280: 349–366.
89.
LeMay, M. (1985) Asymmetries of the brains and skulls of nonhuman primates. In Cerebral Lateralization in Nonhuman Species, Behavioral Biology Series (ed. by S.D. Glick), Academic Press, New York, pp. 223–245.
90.
LeMay, M., and A. Culebras (1972) Human brain. Morphologic differences in the hemisphere demonstrable by carotid arteriography. N.E. J. Med., 287: 168–170.
91.
LeMay, M., and N. Geschwind (1975) Hemispheric differences in the brains of great apes. Brain Behav. Evol., 11: 48–52.
92.
Letenic, K., and P. Rakic (2001) Telencephalic origin of human thalamic GABAergic neurons. Nature Neurosci., 4: 931–936.
93.
Livingstone, M.S., and D.H. Hubel (1984) Specificity of intrinsic connections in primate connections in primate primary visual cortex. J. Neurosci., 4: 2830–2835.
94.
Llinas, R. (1990) Intrinsic electrical properties of nerve cells and their role in network oscillation. Spring Harbor Symposia on Quantitative Biology, 55: 933–938.
95.
Lubke, J., V. Egger, B. Sakmann, and D. Feldmeyer (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J. Neurosci., 20: 5300–5311.
96.
Lund, J.S., T. Yoshioka, and J.B. Levitt (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb. Cortex, 3: 148–162.
97.
McCasland, J.S., and T.A. Woolsey (1988) High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex. J. Comp. Neurol., 278: 555–569.
98.
McGeer, P.L., J.C. Eccles, and E.G. McGeer (1987) Molecular Neurobiology of the Mammalian Brain (2nd ed.). Plenum Press, New York.
99.
Marin-Padilla, M. (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. II. The Basket-pyramidal system. Brain Res., 23: 185–191.
100.
Martina, M., I. Vida, and P. Jonas (2000) Distal initiation and active propagation of action potentials in interneuronal dendrites. Science, 287: 295–300.
101.
Miles, R. (2000) Diversity in inhibition. Science, 287: 244–246.
102.
Mountcastle, V.B. (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol., 20: 408–434.
103.
Mountcastle, V.B. (1978) An organizing principle for cerebral function, the unit module and the distributed system. In The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function (ed. by G.M. Edelman and V.B. Mountcastle), MIT Press, Cambridge MA, pp. 7–51.
104.
Mountcastle, V.B. (1979) Medical Physiology (14th ed.), Vol. 1. C.V. Mosby, St. Louis.
105.
Mountcastle, V.B. (1997) The columnar organization of the neocortex. Brain, 120: 701–722.
106.
Ong, W.Y., and L.J. Carey (1990) Neuronal architecture of the human temporal cortex. Anat. Embryol., 181: 351–369.
107.
Orban, G.A. (1984) Studies in Brain Function. Vol. II. Neuronal Operation in the Visual Cortex. Springer, Berlin.
108.
Paul, R.L., H. Goodman, and M.M. Merzenich (1972) Alterations in mechanoreceptor input to Brodmann’s Areas 1 and 3 of the postcentral hand area of Macaca mulatta after nerve section and regeneration. Brain Res., 39: 1–19.
109.
Peters, A., and D. Kara (1987) The neuronal composition of area 17 in rat visual cortex. The organization of pyramidal cells. IV. J. Comp. Neurol., 260: 573–559.
110.
Peters, A., and B.R. Payne (1993) Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex, 3: 69–78.
111.
Peters, A., and C. Sethares (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J. Comp. Neurol., 306: 1–23.
112.
Peters, A., and C. Sethares (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J. Comp. Neurol., 365: 232–255.
113.
Peters, A., and C. Sethares (1997) The organization of double bouquet cells in monkey striate cortex. J. Neurocytol., 26: 779–797.
114.
Peters, A., and T.M. Walsh (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J. Comp. Neurol., 144: 253–268.
115.
Peters, A., and E. Yilmaz. (1993) Neuronal organization in area 17 of cat visual cortex. Cereb. Cortex, 3: 49–68.
116.
Porter, J.T., C.K. Johnson, and A. Agmon (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J. Neurosci., 21: 2699–2710.
117.
Purves, D., D.R. Riddle, and A.S. LaMantia (1992) Iterated patterns of brain circuitry (or how the cortex got its spots). Trends Neurosci., 15: 362–368.
118.
Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey cortex. J. Comp. Neurol., 145: 61–84.
119.
Rakic, P. (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J., Suppl. 1: 25–40.
120.
Rakic, P. (1988) The specification of cerebral cortical areas: the radial unit hypothesis. Science, 241: 928–931.
121.
Rakic, P., and D.R. Kornack (2001) Neocortical expansion and elaboration during primate evolution: a view from neuroembryology. In Evolutionary Anatomy of the Primate Cerebral Cortex (ed. by D. Falk and K.R. Gibson), Cambridge University Press, Cambridge UK, pp. 30–56.
122.
Ringo, J.L. (1991) Neuronal interconnection as a function of brain size. Brain Behav. Evol., 38: 1–6.
123.
Sannita, W.G., S. Conforto, L. Lopez, and L. Narici (1999) Synchronized approximately 15.0–35.0 Hz oscillatory response to spatially modulated visual patterns in man. Neuroscience, 89: 619–23.
124.
Schlaug, G., A. Schleicher, and K. Zilles (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. J. Comp. Neurol., 351: 441–452.
125.
Schmidt, K.E., R.A.W. Galuske, and W. Singer (1999) Matching the modules: cortical maps and long-range intrinsic connections in visual cortex during development. J. Neurobiol., 41: 10–17.
126.
Schmolke, C. (1989) The ontogeny of dendritic bundles in rabbit visual cortex. Anat. Embryol., 180: 371–381.
127.
Schmolke, C., and K. Fleischauer (1984) Morphological characteristics of neocortical laminae when studied in tangential semithin sections through the visual cortex of rabbit. Anat. Embryol., 169: 125–132.
128.
Schmolke, C., and C. Viebahn (1986) Dendrite bundles in lamina II/III if the rabbit neocortex. Anat. Embryol., 173: 343–348.
129.
Schwartz, M.L., D. Zheng, and P.S. Goldman-Rakic (1988) Periodicity of GABA-containing cells in primate prefrontal cortex. J. Neurosci., 8: 1962–1970.
130.
Seldon, H.L. (1981a) Structure of human auditory cortex I: cytoarchitectonics and dendritic distributions. Brain Res., 229: 277–294.
131.
Seldon, H.L. (1981b) Structure of human auditory cortex II: axon distributions and morphological correlates of speech perception. Brain Res., 229: 295–310.
132.
Seldon, H.L. (1982) Structure of human auditory cortex III: statistical analysis of dendritic trees. Brain Res., 249: 211–221.
133.
Seldon, H.L. (1985) The anatomy of speech perception. In Cerebral Cortex, Vol. 4 (ed. by E.G. Jones and A. Peters), Plenum Press, New York, pp. 273–327.
134.
Selemon, L.D., G. Rajkowska, and P.S. Goldman-Rakic (1995) Abnormally high neuronal density in the schizophrenic cortex. Archives Gen. Psychiat., 52: 805–818.
135.
Shamma, S.A., J.W. Fleshman, P.R. Wiser, and H. Versnel (1993) Organization of response areas in ferret primary auditory cortex. J. Neurophysiol., 69: 367–383.
136.
Shimegi, S., T. Ichikawa, T. Akasaki, and H. Sato (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J. Neurosci., 19: 10164–10175.
137.
Shmuel, A., and A. Grinvald (1996) Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci., 16: 6945–6964.
138.
Shtoyerman, E., A. Arieli, H. Slovin, I. Vanzetta, and A. Grinvald (2000) Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J. Neurosci., 20: 8111–8121.
139.
Skoglund, T.S., R. Pascher, and C.H. Berthold (1996) Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci. Lett., 208: 97–100.
140.
Somers, D.C., S.B. Nelson, and S. Mriganka (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci., 15: 5448–5465.
141.
Somogyi, P., A. Cowey, N. Halász, and T.F. Freund (1981) Vertical organization of neurons accumulating 3H-GAGA in visual cortex in rhesus monkey. Nature, 294: 761–763.
142.
Sompolinsky, H., and R. Shapely (1997) New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol., 7: 514–522.
143.
Sugimoto, S., M. Sakurada, J. Horikawa, and I. Taniguchi (1997) The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hearing Res., 112: 175–185.
144.
Swindale, N.V. (1990) Is the cerebral cortex modular? Trends Neurosci., 13: 487–492.
145.
Swindale, N.V., J.A. Matsubara, and M.S. Cynader (1987) Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci., 7: 1414–1427.
146.
Szentagothai, J. (1983) The modular architectonic principle of neural centers. Rev. Physiol. Biochem. Pharmacol., 98: 11–61.
147.
Tanaka, K. (1997) Columnar organization in the inferotemporal cortex. In Cerebral Cortex, Vol. 12 (ed. by E.G. Jones and A. Peters), Plenum Press, New York, pp. 469–495.
148.
Thomson, A.M., and J. Deuchars (1994) Temporal and spatial properties of local circuits in neocortex. Trends Neurosci., 17: 119–126.
149.
Tommerdahl, M., O. Favorov, B.L. Whitsel, B. Nakhle, and Y.A. Gonchar (1993) Minicolumnar activation patterns in cat and monkey S1 cortex. Cereb. Cortex, 3: 399–411.
150.
Vidyasagar, T.R., X. Pei, and M. Volgushev (1996) Multiple mechanisms underlying the orientation selectivity of visual cortical neurons. Trends Neurosci., 19: 272–277.
151.
Von Bonin, G., and W.R. Mehler (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res., 27: 1–9.
152.
White, E.L., and A. Peters (1993) Cortical modules in the posteromedial barrel subfield (Sml) of the mouse. J. Comp. Neurol., 334: 86–96.
153.
Whitsel, B.L., O.V. Favorov, D.G. Kelly, and M. Tommerdahl (1989) Dynamic process governing the somatosensory cortical response to natural stimulation. In Sensory Processing in the Mammalian Brain (ed. by J.S. Lund), Oxford University Press, New York, pp. 84–116.
154.
Yabuta, N.H., and E.M. Callaway (1998) Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1.Vis. Neurosci., 15: 1007–1027.
155.
Yuste, R., A. Peinado, and L.C. Katz (1992) Neuronal domains in developing neocortex. Science, 257: 665–668.
156.
Zilles, K., H. Stephan, and A. Schleicher (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In Primate Brain Evolution: Methods and Concepts (ed. by E. Armstrong and D. Falk), Plenum, New York.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.