Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Retinal Ganglion Cell Topography in Elasmobranchs

Bozzano A.a · Collin S.P.b

Author affiliations

aInstituto de Ciencias del Mar (CSIC), Barcelona, Spain, and bDepartment of Zoology, University of Western Australia, Nedlands, Australia

Related Articles for ""

Brain Behav Evol 2000;55:191–208

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 9.00 *
EUR 8.00 *
USD 9.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: August 09, 2000
Issue release date: April 2000

Number of Print Pages: 18
Number of Figures: 6
Number of Tables: 2

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: https://www.karger.com/BBE

Abstract

Retinal wholemounts are used to examine the topographic distribution of retinal cells within the ganglion cell layer in a range of elasmobranchs from different depths. The retina is examined for regional specializations for acute vision in six species of selachians, Galeocerdo cuvieri, Hemiscyllium ocellatum, Scyliorhinus canicula, Galeus melastomus, Etmopterus spinax, Isistius brasiliensis, one species of batoid, Raja bigelowi and one species of chimaera, Hydrolagus mirabilis. These species represent a range of lifestyles including pelagic, mesopelagic and benthic habitats, living from shallow water to the sea bottom at a depth of more than 3000 m. The topography of cells within the ganglion cell layer is non-uniform and changes markedly across the retina. Most species possess an increased density of cells across the horizontal (dorsal) meridian or visual streak, with a density range of 500 to 2,500 cells per mm2 with one or more regional increases in density lying within this specialized horizontal area. It is proposed that the higher spatial resolving power provided by the horizontal streak in these species mediates panoramic vision in the lower frontal visual field. Only I. brasiliensis possesses a concentric arrangement of retinal iso-density contours in temporal retina or an area centralis, thereby increasing spatial resolving power in a more specialized part of the visual field, an adaptation for its unusual feeding behavior. In Nissl-stained material, amacrine and ganglion cell populations could be distinguished on the criteria of soma size, soma shape and nuclear staining. Quantitative analyses show that the proportion of amacrine cells lying within the ganglion cell layer is non-uniform and ranges between 0.4 and 12.3% in specialized retinal areas and between 8.2 and 48.1% in the peripheral non-specialized regions. Analyses of soma area of the total population of cells in the ganglion cell layer also show that the pelagic species possess significantly smaller soma (9–186 μm2) than benthic and/or deep-sea species (16–338 μm2), and that a number of different morphological classes of cells are present including a small population of giant ganglion cells.

© 2000 S. Karger AG, Basel


References

  1. Ali, M.A., and M. Anctil (1974) Retinas of the electric ray (Narcine brasiliensis) and the freshwater stingray (Paratrygon motoro). Vision Res., 14: 587–588.
  2. Anctil, M., and M.A. Ali (1974) Giant ganglion cells in the retina of hammerhead shark (Sphyrna lewini). Vision Res., 14: 903–904.
  3. Barlow, H.B. (1953) Summation and inhibition in the frog’s retina. J. Physiol. Lond., 119: 69–88.
  4. Bello, G. (1995) Cephalopods in the stomach contents of G. melastomus (Selachii, Scyliorhinidae) from the Atlantic Ocean. Atti Soc. it. Sci. Nat. Museo civ. Stor. Nat. Milano, 134: 33–40.
  5. Boycott, B.B., and H. Wässle (1974) The morphological types of ganglion cells in the domestic cat’s retina. J. Physiol. (Lond.), 240: 397-419.
  6. Capapé, C. (1974) Systématique écologie et biologie de la reproduction de sélaciens des côtes tunisiennes. Ph.D. dissertation, Université de Paris VI, France.
  7. Carrassón, M., C. Stefanescu, and J. Cartes (1992) Diets and bathymetric distributions of two bathyal sharks of the Catalan deep sea (Western Mediterranean). Marine Ecol. Prog. Ser., 82: 21–30.
  8. Collin, S.P. (1988) The retinal structure of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae). Morphology and quantitative analysis of ganglion, amacrine and bipolar cell populations. Exp. Biol., 47: 195–297.
    External Resources
  9. Collin, S.P. (1999) Behavioural ecology and retinal cell topography. In Adaptive Mechanisms in the Ecology of Vision (ed. by S.N. Archer, M.B.A. Djamgoz, E.R. Loew, J.C. Partridge, and S. Vallerga), Kluwer Academic Publishers, UK, pp. 509–535.
  10. Collin, S.P., and R.V. Hoskins (1997) Topographic mismatching of the displaced amacrine and ganglion cell populations in the retina of deep-sea lanternfish. Soc. Neurosc. Abstr., 23: 729.
  11. Collin, S.P., and R.G. Northcutt (1993) The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). III. Retinal ganglion cells. Brain Behav. Evol., 42: 295–320.
  12. Collin, S.P., and J.C. Partridge (1996) Retinal specializations in the eyes of deep-sea teleosts. J. Fish. Biol., 49 (suppl A): 157–174.
  13. Collin, S.P., and J.D. Pettigrew (1988a) Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly-developed streaks. Brain Behav. Evol., 31: 269–282.
  14. Collin, S.P., and J.D. Pettigrew (1988b) Retinal topography in reef teleosts. II. Some species with prominent horizontal streak and high-density areae. Brain Behav. Evol., 31: 283–295.
  15. Collin, S.P., and J.D. Pettigrew (1988c) Retinal ganglion cell topography in teleosts: a comparison between Nissl-stained material and retrograde labelling from the optic nerve. J. Comp. Neurol., 276: 412–422.
  16. Collin, S.P., and J.D. Pettigrew (1989) Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav. Evol., 34: 184–192.
  17. Collin, S.P., R.V. Hoskins, and J.C. Partridge (1998) Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behav. Evol., 51: 291–314.
  18. Compagno, L.J.V. (ed.) (1984) Sharks ofthe world. Carcharhiniformes. FAO Fish Synops, Vol. 4, Pt 2, 125: 251–655.
  19. Cook, J.E., and D.L. Becker (1991) Regular mosaics of large displaced ganglion cells in the retina of a cichlid fish. J. Comp. Neurol., 306: 668–684.
    External Resources
  20. Cook, J.E., D.L. Becker, and R. Kapila (1992) Independent mosaics of large inner- and outer-stratified ganglion cells in the goldfish retina. J. Comp. Neurol., 318: 355–366.
    External Resources
  21. Denton, E.J. (1990) Light and vision at depths greater than 200 m. In Light and Life in the Sea (ed. by P.J. Herring A.K. Campbell, M. Whitfield, and L. Maddock), Cambridge University Press, Cambridge, England, pp. 127–148.
  22. Dowling, J.E., and H. Ripps (1970) Visual adaptation in the retina of the skate. J. Gen. Physiol., 56: 491–520.
    External Resources
  23. Dunlop, S.A, and L.D. Beazley (1981) Changing retinal ganglion cell distribution in the frog Heleioporus eyrei. J. Comp. Neurol., 202: 221– 236.
  24. Dunn-Meynell, A.A., and S.C. Sharma (1986) The visual system of the channel catfish (Ictalurus punctatus). I. Retinal ganglion cell morphology. J. Comp. Neurol., 247: 32–55.
  25. Ellis, J.R., M.G. Pawson, and S.E. Shackley (1996) The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J. Marine Biol. Ass. UK, 76: 89–106.
  26. Franz, V. (1931) Die Akkommodation des Selachierauges und seine Abblendungsapparate, nebst Befunden an der Retina. Zool. Jb. Abt. Allg. Zool. Physiol., 49: 323–462.
  27. Gallego, A. (1979) Estructura funcional de la retina de los selacios: fotorreceptores y celulas horizontales. Morfología normal y patológica. Sec. A, 3: 313–334.
  28. Gilbert, P.W. (1963) The visual apparatus of sharks. In Sharks and Survival (ed. by P.W. Gilbert), D.C. Heath and Co., Boston, pp. 283–326.
  29. Graydon, M.L., and P.P. Giorgi (1984) Topography of the retinal ganglion cell layer of Xenopus. J. Anat., 139: 145–157.
  30. Grey, M. (1956) The distribution of fishes found below a depth of 2,000 m. Fieldiana, Zool., 36: 75–183.
  31. Gruber, S.H. (1975) Duplex vision in the elasmobranchs: histological, electrophysiological and psychophysical evidence. In Vision in Fishes. New Approaches in Research (ed. by M.A. Ali), Plenum Press, New York, pp. 525–540.
  32. Gruber, S.H., and J.L. Cohen (1985) Visual system of the white shark, Carcharodon carcharias, with emphasis on retinal structure. Mem. S. Cal. Acad. Sci., 9: 61–72.
  33. Gruber, S.H., D.I. Hamasaki, and C.D.B. Bridges (1963) Cones in the retina of lemon shark (Negaprion brevirostris). Vision Res., 3: 397– 399.
  34. Gruber, S.H., R.L. Gulley, and J. Brandon (1975) Duplex retina in seven elasmobranch species. Bull. Marine Sci., 25: 353–358.
  35. Hayes, B.P. (1984) Cell populations of the ganglion cell layer: displaced amacrine and matching amacrine cells in the pigeon retina. Exp. Brain Res., 56: 565–573.
  36. Hebel, R. (1976) Distribution of retinal ganglion cells in five mammalian species (pig, sheep, ox, horse, dog). Anat. Embryol., 150: 45–51.
  37. Hebel, R., and H. Holländer (1983) Size and distribution of ganglion cells in the human retina. Anat. Embryol., 168: 125–136.
    External Resources
  38. Heffner, R.S., and H.E. Heffner (1992) Visual factor in sound localization in mammals. J. Comp. Neurol., 317: 219–232.
  39. Hueter, R.E. (1991) Adaptations for spatial vision in sharks. J. Exp. Zool., suppl. 5: 130–141.
  40. Hughes, A. (1977) The topography of vision in mammals of contrasting lifestyles: comparative optics and retinal organization. In Handbook of Sensory Physiology, Vol. VII/5 (ed. by H. Autrum, R. Jung, W.R. Loewenstein, D.M. MacKay, and H.L. Teuber), Springer-Verlag, New York, pp. 613–756.
  41. Hughes, A. (1985) New perspectives in retinal organization. In Progress in Retinal Research, Vol. 4 (ed. by N. Osborne and G. Chader), Pergamon Press, Oxford, pp. 243–313.
  42. Ito, H., and T. Murakami (1984) Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus. J. Comp. Neurol., 229: 80–96.
  43. Jardas, I. (1979) Morphological, biological and ecological characteristics of the lesser spotted dogfish, Scyliorhinus canicula (Linnaeus, 1758) population in the Adriatic Sea. Izv.-Rep. Inst. Oceanogr. Ribar Spit., 4: 1–104.
  44. Kalmijn, A.J. (1982) Electric and magnetic field detection in elasmobranch fishes. Science, 218: 916–918.
  45. Kohlbara, J., H. Niwa, and M. Oguri (1988) Structural differences in horizontal cells between shallow and deep sea elasmobranch retinas. Nippon Suisan Gakkaishi, 54: 447–451.
  46. Last, P.R., and J.D. Stevens (1994) Sharks and Rays of Australia. CSIRO Australia.
  47. Logiudice, F.T., and R.J. Laird (1994) Morphology and density distribution of cone photoreceptors in the retina of the Atlantic stingray, Dasyatis sabina. J. Morphol., 221: 277–289.
  48. Lyle, J.M. (1983) Food and feeding habits of the lesser spotted dogfish, Scyliorhinus canicula (L.), in the Isle of Man waters. J. Fish Biol., 23: 725–737.
  49. Macpherson, E. (1980) Régime alimentaire de Galeus melastomus Rafinesque, 1810, Etmopterus spinax (L., 1758) et Scymnorhinus licha (Bonnaterre, 1788) en Méditerranée occidentale. Vie Milieu, 30: 139–148.
  50. Matthiessen, L. (1880) Untersuchungen über dem Aplanatismus und die Periscopie der Kristalllinsen in den Augen der Fische. Pflügers Arch., 21: 287–307.
  51. Mednick, A.S., and A.D. Springer (1988) Asymmetric distribution of retinal ganglion cells in goldfish. J. Comp. Neurol., 268: 49–59.
  52. Munk, O. (1970) On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Vidensk. Meddr dansk naturh. Foren., 133: 85–120.
  53. Murray, R.W. (1960) The response of the ampullae of Lorenzini of elasmobranchs to mechanical stimuli. J. Exp. Biol., 37: 417–424.
  54. Murray, R.W. (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J. Exp. Biol., 39: 119–128.
  55. Nishimura, Y., Y. Inoe, and K. Shimai (1979) Morphological development of retinal ganglion cells in the chick embryo. Exp. Neurol., 64: 44– 60.
  56. Parin, N.V. (1966) Data on the biology and distribution of the pelagic sharks, Euprotomicrus bispinatus and Isistius brasiliensis (Squalidae, Pisces). In Fishes of the Pacific and Indian Oceans. Biology and Distribution (ed. by T.S. Rass), Israel Program for Scientific Translation, Jerusalem, pp. 173–195.
  57. Peterson, E.H., and M.H. Rowe (1980) Different regional specializations of neurons in the ganglion cell layer and inner plexiform layer of the California horned shark, Heterodontus francisci. Brain Res., 201: 195–201.
  58. Peterson, E.H., and P.S. Ulinski (1979) Quantitative studies of retinal ganglion cells in a turtle Pseudemys scripta elegans. I. Number and distribution of ganglion cells. J. Comp. Neurol., 186: 17–42.
    External Resources
  59. Pettigrew, J.D., B. Dreher, C.S. Hopkins, M.J. McCall, and M. Brown (1988) Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behav. Evol., 32: 39–56.
  60. Relini-Orsi, L., and M. Wurtz (1975) Osservazioni sulla alimentazione di Galeus melastomus dei fondi batiali liguri. Quad. Lab. Tecnol. Pesca, 2: 17–36.
  61. Reymond, L. (1987) Spatial visual acuity of the falcon, Falco berigora: a behavioral, optical and anatomical investigation. Vision Res., 27: 1859–1874.
  62. Saito, H., T. Shimahara, and Y. Fukuda (1970) Four types of response to light and dark spot stimuli in the cat optic nerve. Tohoku J. Exp. Med., 102: 127–133.
    External Resources
  63. Saldanha, L. (1994) Fishes observed and collected during the Alvin dives at the Lucky Strike thermal site (Mid-Atlantic Ridge, 1993). Cybium, 18: 460–462.
  64. Sardá, F., J.E. Cartes, J.B. Company, and A. Albiol (1998) OTMS: a modified commercial trawl used to sample deep-sea megabenthos. Fish. Sci., 64: 492–493.
  65. Sherman, S.M. (1985) Functional organisation of the W-, X-, and Y-cell pathways in the cat: a review and hypothesis. In Progress in Psychobiology and Physiological Psychology, Vol. 11 (ed. by J.M. Sprague and A.N. Epstein), Academic Press, New York, pp. 233–314.
  66. Shibkova, S.A. (1971) Retinal ganglion cells in selachii. Arch. Anat. Gist. Embr., 60: 21–28 (in Russian: translated by W.K. Stell).
  67. Sivak, J.G. (1976) The accommodative significance of the ‘ramp’ retina of the eye of the stingray. Vision Res., 16: 945–950.
  68. Sivak, J.G., and C.A. Luer (1991) Optical development of the ocular lens of an elasmobranch, Raja elanteria. Vision Res., 31: 373–382.
  69. Springer, S. (1963) Field observations on large sharks of the Florida-Caribbean region. In Sharks and Survival (ed. by P.W. Gilbert), DC Heath and Co., Boston, pp. 95–113.
  70. Stell, W.K., and P. Witkovsky (1973a) Retinal structure in the smooth dogfish, Mustelus canis: light microscopy of photoreceptor and horizontal cells. J. Comp. Neurol., 148: 33–46.
    External Resources
  71. Stell, W.K., and P. Witkovsky (1973b) Retinal structure in the smooth dogfish, Mustelus canis: general description and light microscopy of giant ganglion cells. J. Comp. Neurol., 148: 1–32.
    External Resources
  72. Stell, W.K., P.B. Detwiler, H.-G. Wagner, and M.L. Wolbarsht (1975) Giant ganglion cells in dogfish (Mustelus): Electrophysiology of single on-centre units. In Vision in Fishes. New Approaches in Research. (ed. by M. A. Ali), Plenum Press, New York, pp. 99–112.
  73. Strasburg, D.W. (1963) The diet and dentition of Isistius brasiliensis, with remarks on tooth replacement in other sharks. Copeia, 1963(1): 33– 40.
  74. Theisen, B., E. Zeiske, and H. Breucker (1986) Functional morphology of the olfactory organs in the spiny dogfish (Squalus acanthias L.) and the small-spotted catshark (Scyliorhinus canicula L.). Acta Zoologica, 67: 73–86.
  75. Tricas, T.C. (1982) Bioelectric-mediated predation by swell shark, Cephaloscyllium ventriosum. Copeia, 1982(4): 948–952.
  76. Uemara, M., H. Somiya, M. Moku, and K. Kawaguchi (2000) Temporal and mosaic distribution of specific large ganglion cells in the retina of a daggertooth (Anotopterus pharao, aulopform deep-sea fish). Phil. Trans. Roy. Soc. (in press).
  77. Vaney, D.I., L. Peichl, and B.B. Boycott (1981) Matching populations of amacrine cells in the inner nuclear and ganglion cell layer of the rabbit retina. J. Comp. Neurol., 199: 373–391.
    External Resources
  78. Viverge, L. (1989) Biologie sensorielle des requins. Oceanis, 15: 263–281.
  79. Wagner H.-J, E. Fröhlich, K. Negishi, and S.P. Collin (1998) The eyes of deep-sea fish. II. Functional morphology of the retina. Prog. Ret. Eye Res., 17: 637–685.
  80. Wässle, H., M.H. Chun, and F. Müller (1987) Amacrine cells in the ganglion cell layer of the cat retina. J.Comp. Neurol., 265: 391–408.
  81. Whitehead, P.J.P., M.L. Bauchot, J.C. Hureau, J. Nielsen, and E. Tortonese (1984) Fish of the North-eastern Atlantic and Mediterranean. Vol. I., Unesco, United Kingdom.
  82. Widder, E.A. (1998) A predatory use for counter-illumination by the squaloid shark, Isistius brasiliensis. Env. Biol. Fish., 53: 267–273.
  83. Wong, R.O.L., and A. Hughes (1987) The morphology, number and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina. J. Comp. Neurol., 255: 159– 177.
  84. Wurtz, M., and M. Vacchi (1978) Ricerca di cicli nictemerali nell’alimentazione di selaci batiali. Quad. Lab. Tecnol. Pesca, 3 (suppl. 1): 155– 164.
  85. Yew, D.T., Y.W. Chan, M. Lee, and S. Lam (1984) A biophysical, morphological and morphometric survey of the eye of the small shark (Hemiscyllium plagiosum). Anat. Anz., 155: 355–363.
    External Resources
  86. Zeiske, E., B. Theisen, and S.H. Gruber (1987) Functional morphology of the olfactory organ of two carcharinid shark species. Can. J. Zool., 65: 2406–2412.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: August 09, 2000
Issue release date: April 2000

Number of Print Pages: 18
Number of Figures: 6
Number of Tables: 2

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: https://www.karger.com/BBE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.