Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Reduction of Brain and Sense Organs in the Fossil Insular Bovid Myotragus

Köhler M. · Moyà-Solà S.

Author affiliations

Institut de Paleontologia M.C., Sabadell, Spain

Related Articles for ""

Brain Behav Evol 2004;63:125–140

Do you have an account?

Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 9.00 *
EUR 8.00 *
USD 9.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: March 18, 2004
Issue release date: March 2004

Number of Print Pages: 16
Number of Figures: 4
Number of Tables: 7

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: https://www.karger.com/BBE

Abstract

Our study of the fossil rupicaprine bovid Myotragus [Bate, 1909] from the Mediterranean island Majorca (Spain) provides evidence that this animal underwent significant changes (reduction) in the relative size of brain and sense organs after geographic isolation at the end of the Messinian Salinity Crisis (Miocene-Pliocene boundary, 5.2 Mya). The changes in the central nervous system of Myotragus parallel the pattern reported for domesticated animals, in which decrease in relative brain size is accompanied by a decrease in the relative size of their sense organs. We interpret the important size reduction of brain and sense organs in Myotragus as an adaptive strategy for more efficient energy use under the special environmental conditions of the insular ecosystem, characterized by absence of predation and limitation of trophic resources.

© 2004 S. Karger AG, Basel


References

  1. Aiello L, Wood B (1994) Cranial variables as predictors of hominine body mass. Am J Phys Anthr 95:409–426.
  2. Alba, DM, Moyà – Solà S, Köhler M, Rook L (2001) Heterochrony and the cranial anatomy of Oreopithecus: some cladistic fallacies and the significance of developmental constraints in phylogenetic analysis. In: Hominoid Evolution and Climatic Change (De Bonis L de, Koufos G, Andrews P, eds), vol 2 (13), pp 284–315. Cambridge: Cambridge University Press.
  3. Alcover JA (1976) L’evolució de Myotragus Bate, 1909 (Artiodactyla, Rupicaprini), un procés biológic lligat al fenomen de la insularitat. Bull Inst Cat Hist Nat 40 (Sec. Geol. 1):59–94.
  4. Alcover JA, Moyà-Solà S, Pons-Moyà J (1981) Les quimeres del passat. Els vertebrats fóssils del Plio-Pleistocé de les Balears i Pitiusses. Palma: Moll.
  5. Alexander RMcN (1991) It may be better to be a wimp. Nature 353:696.
  6. Alexander RMcN (1996) Optima for Animals. Princeton NJ: Princeton University Press.
  7. Alexander RMcN (1999) Energy for Animal Life. Oxford UK: Oxford University Press.
  8. Armstrong E (1985) Allometric considerations of the adult mammalian brain, with special emphasis on primates. In: Size and Scaling in Primate Biology (Jungers WL, ed), pp 115–146. New York: Plenum Press.
  9. Barton RA (1998) Visual specialization and brain evolution. Proc R Soc Lond (B) 265:1933–1937.
  10. Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058.
  11. Bate DMA (1909) A new artiodactyle from Majorca. Geol Mag 543:385–388.
  12. Bauchot R, Stephan H (1967) Encéphales et moulages endocraniens de quelques insectivores et primates actuels. Problèmes actuels de Paléontologie. Coll Int Centre Nat Rech Sci 163:575–586.
  13. Brodin A (2000) Why do hoarding birds gain fat in winter in the wrong way? Suggestions from a dynamic model. Behav Ecol 11:27–39.
  14. Brodmann K (1908) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J Psychol Neurol (Leipzig) 10:231–246.
  15. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: JA Barth.
  16. Brooke M de L, Hanley S, Laughlin S B (1999) The scaling of eye size with body mass in birds. Proc R Soc Lond (B) 266:405–412.
    External Resources
  17. Catania KC (2000) Cortical organization in insectivora: the parallel evolution of the sensory periphery and the brain. Brain Behav Evol 55:311–321.
  18. Cichon M (1997) Evolution of longevity through optimal resource allocation. Proc R Soc Lond B 264:1383–1388.
  19. Clutton-Brock J (1999) A Natural History of Domesticate Mammals. Cambridge UK: Cambridge University Press.
  20. Cooper H M (1993) Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J Comp Neurol 328:313–350.
  21. Crawford M A (1992) The role of dietary fatty acids in biology: Their place in the evolution of the human brain. Nutr Rev 50:3–11.
  22. Damuth J (1990) Problems in estimating body masses of archaic ungulates using dental measurements. In: Body Size in Mammalian Paleobiology: Estimations and Biological Implication (Damuth J, MacFadden BJ, eds), pp 207–228. Cambridge UK: Cambridge University Press.
  23. Darwin Ch (1859) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.
  24. Darwin Ch (1883) The Variation of Animals and Plants under Domestication. vol 1, 2 (D) (2nd revised ed), New York: Appleton and Co.
  25. Deacon TW (1992) Impressions of ancestral brains. In: The Cambridge Encylopedia of Human Evolution (Jones S, Martin RD, Pilbeam D, eds), pp. 117. Cambridge UK: Cambridge University Press.
  26. Delson E, Terranova CJ, Jungers WL, Sargis EJ, Jablonski N, Dechow PC (2000) Body mass in cercopithecidae (Primates, Mammalia): Estimation and scaling in extinct and extant taxa. Am Mus Nat Hist 83:1–159.
  27. Diamond IT, Hall WC (1969) Evolution of neocortex. Science 164:251–262.
  28. Ebinger P (1974) A cytarquitectonic volumetric comparison of brains in wild and domestic sheep. Z Anat Entwickl-Gesch 144:267–302.
  29. Ebinger P (1975a) A cytarquitectonic volumetric comparison of the area gigantopyramidalis in wild and domestic sheep. Anat Embr 147:167–175.
  30. Ebinger P (1975b) Quantitative investigations of visual brain structures in wild and domestic sheep. Anat Embryol 146:313–323.
  31. Falk D (1985) Hadar AL 162-28 endocast as evidence that brain enlargement preceded cortical reorganization in hominid evolution. Nature 313:45–47.
  32. Franck A (1964) Vergleichende Untersuchungen am Höhlenfisch Anoptichthys antrobius und seinem oberirdischen Vorfahren Astyanax mexicanus. Zool Anz 172:95–107.
  33. Gervais P (1872) Sur un singe fossile, d’une espèce non encore décrite, qui a été découverte au monte Bamboli. C R Acad Sci Paris 74:1217–1223.
  34. Gould SJ (1975) On the scaling of tooth size in mammals. Am Zool 15:351–362.
  35. Grant PR (1998) Patterns on islands and microevolution. In: Evolution on Islands (Grant PR, ed), pp. 1–17. Princeton NJ: Princeton University Press.
  36. Grzimek B (1979) Grzimeks Tierleben, Säugetiere 4, vol.13. München: DTV.
  37. Herre W, Röhrs M (1990) Haustiere – Zoologisch gesehen. Stuttgart, New York: Fischer.
  38. Hervant F, Mathieu J, Barré H (1999) Comparative study on the metabolic responses of subterranean and surface-dwelling amphipods to long-term starvation and subsequent refeeding. J Exp Biol 202:3587–3595.
  39. Hervant F, Mathieu J, Durand J (2001) Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204:269–281.
  40. Holloway RL (1970) Neural parameters, hunting, and the evolution of the human brain. In: The Primate Brain (Noback CR, Montagna W, eds), pp. 299–310. New York: Appleton-Century-Crofts.
  41. Holloway RL (1983) Cerebral brain endocast pattern of Australopithecus afarensis hominid. Nature 303:420–422.
  42. Honacki JH, Kinman KE, Koeppl JW (1982) Mammalian species of the World. Lawrence KS: Allen Press and Ass. Syst. Coll. Lawrence.
  43. Janis ChM (1990) Correlation of cranial and dental variables with body size in ungulates and macropodoids. In: Body Size in Mammalian Paleobiology: Estimations and Biological Implication (Damuth J, MacFadden BJ, eds), pp 255–300. Cambridge UK: Cambridge University Press.
  44. Jerison HJ (1970) Gross brain indices and the analysis of fossil endocasts. In: The Primate Brain (Noback CR, Montagna W, eds), pp 225–244. New York: Appleton-Century-Crofts.
  45. Jerison HJ (1973) Evolution of Brain and Intelligence. New York: Academic Press.
  46. Johnson JI, Rubel EW, Hatton GI (1974) Mechanosensory projections to cerebral cortex of sheep. J Comp Neurol 158:81–108.
  47. Johnson MS, Thomson SC, Speakman JR (2001) Limits to sustained energy intake. II. Inter-Relationships between resting metabolic rate, life-history traits and morphology in Mus musculus. J Exp Biol 204:1937–1946.
  48. Jungers WL (1987) Body size and morphometric affinities of the appendicular skeleton in Oreopithecus bambolii (GF 11778). J Hum Evol 16:445–456.
  49. Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain and Mind 1:7–23.
    External Resources
  50. Köhler M (1993) Skeleton and habitat of recent and fossil ruminants. Münch Geow Abh 25:1–88.
  51. Köhler M, Moyà-Solà S (2001) Phalangeal adaptations in the fossil insular goat Myotragus. J Vert Paleontol 21 (3):621–624.
  52. Krause J, Loader SP, McDermott J, Ruxton GD (1998) Refuge use by fish as a function of body length-related metabolic energy expenditure and predation risk. Proc R Soc London (B) 265:2373–2379.
  53. Kruska D (1980) Domestikationsbedingte Hirngrössenänderungen bei Säugetieren. Z Zool Syst Evol-forsch 18:161–195.
  54. Kruska D (1988) Mammalian domestication and its effect on brain structure and behavior. In: Intelligence and Evolutionary Biology (Jerison HJ, Jerison I, eds), pp 211–246. NATO ASI Series G17. Berlin: Springer.
  55. Leinders JJM (1979) On the osteology and function of the digits of some ruminants and their bearing on taxonomy. Z Säugetierk 44:305–318.
  56. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640.
  57. Lovegrove B (2001) The evolution of body armor in mammals: Plantigrade constraints of large body size. Evolution 55:1464–1473.
  58. MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton NJ: Princeton University Press.
  59. Maglio VJ (1972) Evolution of mastication in the Elephantidae. Evolution 26:638–658.
  60. Margalef R (1974) Ecología. Barcelona: Omega.
  61. Martin RD (1990) Evolution of the Primate Central Nervous System. Weinheim: Chapman and Hall.
  62. Moyà-Solà S, Köhler M (1997) The phylogenetic relationships of Oreopithecus bambolii Gervais, 1872. C R Acad Sci Paris, 324:141–148.
  63. Moyà-Solà S, Pons-Moyà J (1982) Myotragus pepgonellae nov. sp., un primitivo representante del género Myotragus Bate, 1909 (Bovidae, Mammalia) en la isla de Mallorca (Baleares). Acta Geol Hisp17:77–87.
  64. Moyà-Solà S, Agusti J, Pons-Moyà J (1985) The Mio – Pliocene insular faunas from the West Mediterranean. Origin and distribution factors. Paleobiol Cont 14:347–357.
  65. Oboussier H, Schliemann H (1966) Hirn- und Körpergewichts-Beziehungen bei Boviden. Z Säugetierk 31:464–471.
  66. Pons-Moyà J, Moyà-Solà S, Kopper JS (1979) La fauna de mamíferos de la Cova de Canet (Esporles) y su cronología. Endins 5–6:55–58.
  67. Portmann A (1976) Einführung in die Vergleichende Morphologie der Wirbeltiere. Basel-Stuttgart: Schwabe and Co.
  68. Prothero DR, Sereno PC (1982) Allometry and paleoecology of medial Miocene dwarf rhinoceroses from the Texas Gulf coastal plain. Paleobiology 8:16–30.
  69. Radinsky L (1968) A new approach to mammalian cranial analysis, illustrated by examples of prosimian primates. J Morph 124:167–180.
  70. Radinsky L (1975) Evolution of the felid brain. Brain Behav Evol 11:214–254.
  71. Radinsky L (1977) Brains of early carnivores. Palaeobiology 3:333–349.
  72. Radinsky L (1978) Evolution of brain size in carnivores and ungulates. Am Nat 112:815–831.
    External Resources
  73. Radinsky L (1981) Brain evolution in extinct South American ungulates. Brain Behav Evol 18:169–187.
  74. Ramis D, Alcover JA (2001) Revisiting the earliest human presence in Mallorca, Western Mediterranean. Proc Prehist Soc 67:1–9.
  75. Röhrs M, Ebinger P (2001) Welche quantitativen Beziehungen bestehen bei Säugetieren zwischen Schädelkapazität und Hirnvolumen? Mamm Biol 66:102–110.
  76. Ronnefeld U (1970) Morphologische und quantitative Neocortexuntersuchungen bei Boviden, ein Beitrag zur Phylogenie dieser Familie. Morph Jb 115:163–230.
  77. Sanides F (1970) Functional architecture of motor and sensory cortices in primates. In: The Primate Brain (Noback CR, Montagna W, eds), pp 137–208. New York: Appleton-Century-Crofts.
  78. Schaller GB (1977) Mountain Monarchs. Wild sheep and goats of the Himalaya. Chicago IL: University Chicago Press.
  79. Scott KM (1990) Postcranial dimensions of ungulates as predictors of body mass. In: Body Size In Mammalian Paleobiology: Estimations and Biological Implication (Damuth J, MacFadden BJ, eds), pp 301–336. Cambridge UK: Cambridge University Press.
  80. Sondaar PY (1977) Insularity and its effect on mammalian evolution. In: Major Patterns of Vertebrate Evolution (Hecht MK, Goody PC, Hecht BM, eds), pp 671–707. New York: Plenum.
  81. Speakman JR, Gidney A, Bett J, Mitchell IP, Johnson MS (2001) Limits to sustained energy intake. J Exp Biol 204:1957–1965.
  82. Stanford CB (2001) Avoiding predators: Expectations and evidence in primate antipredator behavior. Int J Primatol 23:741–757.
    External Resources
  83. Starck JM (1999) Phenotypic flexibility of the avian gizzard: rapid, reversible and repeated changes of organ size in response to changes in dietary fibre content. J Exp Biol 202:3171–3179.
  84. Stark D (1979) Vergleichende Anatomie der Wirbeltiere, vol. 2. Berlin: Springer.
  85. Stephan H (1951) Vergleichende Untersuchungen über den Feinbau des Hirnes von Wild- und Haustieren (Nach Studien an Schwein und Schaf). Zool Jb 71:487–586.
  86. Stephan H, Andy O (1970) The allocortex in primates. In: The Primate Brain (Noback CR, Montagna W, eds), pp 109–135. New York: Appleton-Century-Crofts.
  87. Tobias PH V (1971) The Brain In Hominid Evolution. New York and London: Columbia University Press.
  88. Waldren W (1974) Evidence of the extinction of the Myotragus balearicus. Prehist Arqueolog Islas Baleares 24:31–38.
  89. Wayne RK (1986) Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40:243–261.
  90. Welker WI, Campos GB (1963) Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family Procyonidae. J Comp Neurol 120:19–36.
  91. White KS, Ward Testa J, Berger J (2001) Behavioral and ecologic effects of differential predation pressure on moose in Alaska. J Mammol, 2:422–429.
  92. Wieser W (1991) Limitations of energy acquisition and energy use in small poikilotherms: evolutionary implications. Funct Ecol 5:234–240.
  93. Williams RW, Cavada C, Reinoso-Suárez F (1993) A cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. J Neurosci 13:208–228.
  94. Zeuner FE (1963) A History of Domesticated Animals. London: Hutchinson and Co.
  95. Zohary D, Tchernov E, Kolska Horwitz L (1998) The role of unconscious selection in the domestication of sheep and goats. J Zool Lond 245:129–135.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: March 18, 2004
Issue release date: March 2004

Number of Print Pages: 16
Number of Figures: 4
Number of Tables: 7

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: https://www.karger.com/BBE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.