Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.


The Role of Ubiquitin-Protein Ligases in Neurodegenerative Disease

Ardley H.C. · Robinson P.A.

Author affiliations

Molecular Medicine Unit, University of Leeds, St. James’s University Hospital, Leeds, UK

Corresponding Author

Helen C. Ardley

Molecular Medicine Unit, University of Leeds, Level 6 Clinical Sciences Building

St. James’s University Hospital

Leeds LS9 7TF (UK)

Tel. +44 113 206 5677, Fax +44 113 244 4475, E-Mail h.c.ardley@leeds.ac.uk

Related Articles for ""

Neurodegenerative Dis 2004;1:71–87

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Alzheimer’s disease and Parkinson’s disease are the most common neurodegenerative conditions associated with the ageing process. The pathology of these and other neurodegenerative disorders, including polyglutamine diseases, is characterised by the presence of inclusion bodies in brain tissue of affected patients. In general, these inclusion bodies consist of insoluble, unfolded proteins that are commonly tagged with the small protein, ubiquitin. Covalent tagging of proteins with chains of ubiquitin generally targets them for degradation. Indeed, the ubiquitin/proteasome system (UPS) is the major route through which intracellular proteolysis is regulated. This strongly implicates the UPS in these disease-associated inclusions, either due to malfunction (of specific UPS components) or overload of the system (due to aggregation of unfolded/mutant proteins), resulting in subsequent cellular toxicity. Protein targeting for degradation is a highly regulated process. It relies on transfer of ubiquitin molecules to the target protein via an enzyme cascade and specific recognition of a substrate protein by ubiquitin-protein ligases (E3s). Recent advances in our knowledge gained from the Human Genome Mapping Project have revealed the presence of potentially hundreds of E3s within the human genome. The discovery that parkin, mutations in which are found in at least 50% of patients with autosomal recessive juvenile parkinsonism, is an E3 further highlights the importance of the UPS in neurological disease. To date, parkin is the only E3 confirmed to have a direct causal role in neurodegenerative disorders. However, a number of other (putative) E3s have now been identified that may cause disease directly or interact with neurological disease-associated proteins. Many of these are either lost or mutated in a given disease or fail to process disease-associated mutant proteins correctly. In this review, we will discuss the role(s) of E3s in neurodegenerative disorders.

© 2004 S. Karger AG, Basel


  1. UK 2001 census, National Statistics: http:// www.statistics.gov.uk/cci/nugget.asp?id = 287.
  2. Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ: Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease. J Pathol 1988;155:9–15.
  3. Kaytor MD, Warren ST: Aberrant protein deposition and neurological disease. J Biol Chem 1999;274:37507–37510.
  4. Sherman MY, Goldberg AL: Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron 2001;29:15–32.
  5. Johnston JA, Ward CL, Kopito RR: Aggresomes: A cellular response to misfolded proteins. J Cell Biol 1998;143:1883–1898.
  6. Chung KKK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM: Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1:Implications for Lewy-body formation in Parkinson disease. Nat Med 2001;7:1144–1150.
  7. Martin-Aparicio E, Yamamoto A, Hernandez F, Hen R, Avila J, Lucas JJ: Proteasomal-dependent aggregation reversal and absence of cell death in a conditional mouse model of Huntington’s disease. J Neurosci 2001;21:8772–8781.
  8. O’Farrell C, Murphy DD, Petrucelli L, Singleton AB, Hussey J, Farrer M, Dickson DW, Cookson MR: Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Mol Brain Res 2001;97:94–102.
  9. Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, Tanzi RE, Sawa A, Dawson VL, Dawson TM, Ross CA: Inducible expression of α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 2001;10:919–926.
  10. Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE: Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 2001;12:1393–1407.
  11. Lee H-J, Shin SY, Choi C, Lee YH, Lee S-J: Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002;277:5411–5417.
  12. Junn E, Lee SS, Suhr UT, Mouradian MM: Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem 2002;277:47870–47877.
  13. Niwa J-i, Ishigaki S, Hishikawa N, Yamamoto M, Doyu M, Murata S, Tanaka K, Taniguchi N, Sobue G: Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 2002;277:39793–36798.
    External Resources
  14. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ: Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002;416:535–539.
  15. Ardley HC, Scott GB, Rose SA, Tan NGS, Markham AF, Robinson PA: Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells over-expressing Parkin. Mol Biol Cell 2003;14:4541–4556.
  16. Goto S, Takahashi R, Kumiyama A, Radak Z, Hayashi T, Takenouchi M, Abe R: Implications of protein degradation in aging. Ann NY Acad Sci 2001;928:54–64.
  17. Mayer RJ: From neurodegeneration to neurohomeostasis: The role of ubiquitin. Drug News Perspect 2003;16:103–108.
  18. Berke SJ, Paulson HL: Protein aggregation and the ubiquitin proteasome pathway: Gaining the UPPer hand on neurodegeneration. Curr Opin Genet Dev 2003;13:253–261.
  19. Gray DA, Tsirigotis M, Woulfe J: Ubiquitin, proteasomes, and the aging brain. Sci Aging Knowledge Environ 2003;34:RE6.
  20. Layfield R, Cavey JR, Lowe J: Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing Res Rev 2003;2:343–356.
  21. Robinson PA, Ardley HC: Ubiquitin protein ligases: Novel therapeutic targets? Curr Protein Pept Sci, in press.
  22. Johnson JL, Craig EA: Protein misfolding in vivo: Unraveling complex pathways. Cell 1997;90:201–204.
  23. Feder ME, Hofmann GE: Heat shock proteins, molecular chaperones and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 1999;61:243–282.
  24. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR: Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000;404:770–774.
  25. Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503–533.
  26. Weissman AM: Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001;2:169–178.
  27. Doherty FJ, Dawson S, Mayer RJ: The ubiquitin-proteasome pathway of intracellular proteolysis. Essays Biochem 2002;38:51–63.
  28. Wojcik C: Regulation of apoptosis by the ubiquitin and proteasome pathway. J Cell Mol Med 2002;6:25–48.
  29. Muratani M, Tansey WP: How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003;4:192–201.
  30. Varshavsky A: The N-end rule and regulation of apoptosis. Nat Cell Biol 2003;5:373–376.
  31. Goldberg AL, Rock KL: Proteolysis, proteasomes and antigen presentation. Nature 1992;357:45–46.
    External Resources
  32. Kloetzel P-M: Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2001;2:179–187.
  33. Chung CH, Baek SH: Deubiquitinating enzymes: Their diversity and emerging roles. Biochem Biophys Res Commun 1999;266:633–640.
  34. Baek KH: Conjugation and deconjugation of ubiquitin regulating the destiny of proteins. Exp Mol Med 2003;35:1–7.
  35. Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J: The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 1989;246:670–673.
  36. Hicke L: Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001;2:195–201.
  37. Karin M: How NF-kappaB is activated: The role of the IkappaB kinase (IKK) complex. Oncogene 1999;18:6867–6874.
  38. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W: Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 2002;4:222–231.
  39. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM: A family of proteins structurally and functionally related to the E6-AP ubiquitin protein ligase. Proc Natl Acad Sci USA 1995;92:2563–2567.
  40. Borden KL: RING domains: Master builders of molecular scaffolds? J Mol Biol 2000;295:1103–1112.
  41. Freemont PS: RING for destruction? Curr Biol 2000;10:R84–R87.
    External Resources
  42. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD: The lore of the RINGs: Substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 2000;10:429–439.
  43. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993;75:495–505.
  44. Kumar S, Kao WH, Howley PM: Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 1997;272:13548–13554.
  45. Nuber U, Scheffner M: Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction. J Biol Chem 1999;274:7576–7582.
  46. Rotin D, Staub O, Haguenauer-Tsapis R: Ubiquitination and endocytosis of plasma membrane proteins: Role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 2000;176:1–17.
  47. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000;6:1365–1375.
  48. International Human Genome Sequencing Consortium: A physical map of the human genome. Nature 2001;409:860–921.
  49. Tyers M, Jorgensen P: Proteolysis and the cell cycle: With this RING I do thee destroy. Curr Opin Genet Dev 2000;10:54–64.
  50. Joazeiro CA, Weissman AM: RING finger proteins: Mediators of ubiquitin ligase activity. Cell 2000;102:549–552.
  51. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM: RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999;96:11364–11369.
  52. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC: The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999;286:309–312.
  53. Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S, Zhang H, Baron R: Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001;276:35185–35193.
  54. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000;25:302–305.
  55. Seol JH, Feldman RMR, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Claypool J, Sandmeyer S, Nasmyth K, Shevchenko A, Deshaies RJ: Cdc/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 1999;13:1614–1626.
  56. Ohta T, Michel JJ, Schottelius AJ, Xiong Y: ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 1999;3:535–541.
  57. Leverson JD, Joazeiro CA, Page AM, Huang H, Hieter P, Hunter T: The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol Biol Cell 2000;11:2315–2325.
  58. Gmachl M, Gieffers C, Podtelejnikov AV, Mann M, Peters JM: The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc Natl Acad Sci USA 2000;97:8973–8978.
  59. Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W: The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999;13:1822–1833.
  60. Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A: Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 1999;96:12436–12441.
  61. Saurin AJ, Borden KLB, Boddy MN, Freemont PS: Does this have a familiar RING? Trends Biochem Sci 1996;21:208–214.
  62. Kentsis A, Dwyer EC, Perez JM, Sharma M, Chen A, Pan ZQ, Borden KL: The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J Mol Biol 2001;312:609–623.
  63. Pringa E, Martinez-Noel G, Muller U, Harbers K: Interaction of the ring finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes. J Biol Chem 2001;276:19617–19623.
  64. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI: U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 2001;276:33111–33120.
  65. Murata S, Minami Y, Minami M, Chiba T, Tanaka K: CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2001;2:1133–1138.
  66. Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ, Gould KL: Structural insights into the U-box, a domain associated with multi- ubiquitination. Nat Struct Biol 2003;10:250–255.
  67. Nuber U, Schwarz SE, Scheffner M: The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur J Biochem 1998;254:643–649.
  68. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM: Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000;275:8945–8951.
  69. Niwa J-I, Ishigaki S, Doyu M, Suzuki T, Tanaka K, Sobue G: A novel centrosomal RING-finger protein, Dorfin, mediates ubiquitin ligase activity. Biochem Biophys Res Commun 2001;281:706–713.
  70. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY: Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998;19:148–154.
  71. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama K-I, Takahashi R: CHIP is associated with Parkin, a gene responsible for familial Parkinson’s disease, and enhances its ubiquitin ligase activity. Mol Cell 2002;10:55–67.
  72. McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Breakefield XO, Hyman BT: TorsinA and heat shock proteins act as molecular chaperones: Suppression of alpha-synuclein aggregation. J Neurochem 2002;83:846–854.
  73. Namba Y, Tomonaga M, Ohtsuka K, Oda M, Ikeda K: HSP 70 is associated with abnormal cytoplasmic inclusions characteristic of neurodegenerative diseases. No To Shinkei 1991;43:57–60.
  74. Renkawek K, Stege GJ, Bosman GJ: Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 1999;10:2273–2276.
  75. Lowe J, McDermott H, Pike I, Spendlove I, Landon M, Mayer RJ: Alpha B crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol 1992;166:61–68.
  76. McNaught K St.P, Shashidharan P, Perl DP, Jenner P, Olanow CW: Aggresome-related biogenesis of Lewy bodies. Eur J Neurosci 2002;16:2136–2148.
  77. Shimura H, Hattori N, Kubo S, Yoshikawa M, Kitada T, Matsumine H, Asakawa S, Minoshima S, Yamamura Y, Shimizu N, Mizuno Y: Immunohistochemical and subcellular localization of parkin protein: Absence of protein in autosomal recessive juvenile parkinsonism patients. Ann Neurol 1999;45:668–672.
  78. Fergusson J, Landon M, Lowe J, Dawson SP, Layfield R, Hanger DP, Mayer RJ: Pathological lesions of Alzheimer’s disease and dementia with Lewy bodies brains exhibit immunoreactivity to an ATPase that is a regulatory subunit of the 26S proteasome. Neurosci Lett 1996;219:167–70.
  79. Ii K, Ito H, Tanaka K, Hirano A: Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly. J. Neuropathol. Exp Neurol 1997;56:125–131.
  80. Arima K, Mizutani T, Alim MA, Tonozuka-Uehara H, Izumiyama Y, Hirai S, Ueda K: NACP/alpha-synuclein and tau constitute two distinctive subsets of filaments in the same neuronal inclusions in brains from a family of parkinsonism and dementia with Lewy bodies: Double-immunolabeling fluorescene and electron microscopic studies. Acta Neuropathol 2000;100:115–121.
  81. Seitelberger F, Lassmann H, Bancher C: Cytoskeleton pathology in Alzheimer’s disease and related disorders. J Neural Transm Suppl 1991;33:27–33.
  82. Jensen PH, Islam K, Kenney J, Nielsen MS, Power J, Gai WP: Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J Biol Chem 2000;275:21500–21507.
  83. Nakazato Y, Sasaki A, Hirato J, Ishida Y: Immunohistochemical localization of neurofilament protein in neuronal degenerations. Acta Neuropathol 1984;64:30–36.
  84. Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH: Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 2003;749–757.
  85. Cookson MR, Lockhart PJ, McLendon C, O’Farrell C, Schlossmacher, Farrer MJ: RING finger 1 mutations in Parkin produce altered localization of the protein. Hum Mol Genet 2003;2957–2965.
  86. Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES: Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 1998;146:1239–1254.
  87. Kopito RR: Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000;10:524–530.
  88. Garcia-Mata R, Gao Y-S, Sztul E: Hassles with taking out the garbage: Aggravating aggresomes. Traffic 2002;3:388–396.
  89. Muralidhar MG, Thomas JB: The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 1993;11:253–266.
  90. Oh CE, McMahon R, Benzer S, Tanouye MA: Bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog. J Neurosci 1994;14:3166–3179.
  91. Aguilera M, Oliveros M, Martinez-Padron M, Barbas JA, Ferrus A: Ariadne-1: A vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins. Genetics 2000;155:1231–44.
  92. Huang Y, Baker RT, Fischer-Vize JA: Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science 1995;270:1828–1831.
  93. Kishino T, Lalande M, Wagstaff J: UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997;15:70–73.
  94. Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL: De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 1997;15:74–77.
  95. Glenner GG, Wong CW: Alzheimer’s disease: Initial report of the purification and characterisation of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885–890.
  96. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA: Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 1988;85:4884–4888.
  97. Perry G, Friedman R, Shaw G, Chau V: Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 1987;84:3033–3036.
  98. St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, et al: The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 1987;235:885–890.
  99. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, et al: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995;375:754–760.
  100. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, et al: Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995;269:973–977.
  101. Esler WP, Wolfe MS: A portrait of Alzheimer secretases – New features and familiar faces. Science 2001;293:1449–1454.
  102. Selkoe DJ: Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci USA 2001;98:11039–11041.
  103. Kim TW, Pettingell WH, Hallmark OG, Moir RD, Wasco W, Tanzi RE: Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J Biol Chem 1997;272:11006–11010.
  104. Steiner H, Capell A, Pesold B, Citron M, Kloetzel PM, Selkoe DJ, Romig H, Mendla K, Haass C: Expression of Alzheimer’s disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J Biol Chem 1998;273:32322–32331.
  105. Li J, Pauley AM, Myers RL, Shuang R, Brashler JR, Yan R, Buhl AE, Ruble C, Gurney ME: SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 2002;82:1540–1548.
  106. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 2001;98:6336–6341.
  107. Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I: Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J Neurosci 2001;21:9235–9245.
  108. Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, Yamazaki K, Koto A, Aiso S, Nishimoto I: Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett 2002;324:227–231.
  109. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwalt AC, Reed JC: Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003;423:456–461.
  110. Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, Nawa M, Terashita K, Aiso S, Nishimoto I: A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 2003;17:1150–1158.
  111. Lang AE, Lozano AM: Parkinson’s disease. First of two parts. N Engl J Med 1998;339:1044–1053.
  112. Olanow CW, Tatton WG: Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999;22:123–144.
  113. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL: Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276:2045–2047.
  114. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605–608.
  115. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH: The ubiquitin pathway in Parkinson’s disease. Nature 1998;395:451–452.
  116. Bonifati V, Rizzu P, van Baron MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MCJ, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Heutink P: Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 2003;299:256–259.
  117. Le W-D, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK: Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 2003;33:85–89.
  118. Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Masterman D, Mastaglia F, Laing NG, Stajich JM, Slotterbeck B, Booze MW, Ribble RC, Rampersaud E, West SG, Gibson RA, Middleton LT, Roses AD, Haines JL, Scott BL, Vance JM, Pericak-Vance MA: Complete genomic screen in Parkinson disease: Evidence for multiple genes. JAMA 2001;286:2239–2244.
  119. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW: Localization of a novel locus for autosomal recessive early-onset Parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001;68:895–900.
  120. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ: Ubiquitination of a new form of α-synuclein by Parkin from human brain: Implications for Parkinson’s disease. Science 2001;293:263–269.
  121. Choi P, Golts N, Snyder H, Chong M, Petrucelli L, Hardy J, Sparkman D, Cochran E, Lee JM, Wolozin B: Co-association of parkin and alpha-synuclein. Neuroreport 2001;12:2839–2843.
  122. Miller DW, Ahmad R, Hague S, Baptista MJ, Canet-Aviles R, McLendon C, Carter DM, Zhu PP, Stadler J, Chandran J, Klinefelter GR, Blackstone C, Cookson MR: L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem 2003;278:36588–36595.
  123. Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A: Association between early-onset Parkinson’s disease and mutations in the parkin gene. French Parkinson’s Disease Genetics Study Group. N Engl J Med 2000;342:1560–1567.
  124. Jeon BS, Kim JM, Lee DS, Hattori N, Mizuno Y: An apparently sporadic case with parkin gene mutation in a Korean woman. Arch Neurol 2001;58:988–989.
  125. Peng R, Gou Y, Yuan Q, Li T, Latsoudis H, Yuan G, Luo D, Liu X, Collier DA: Mutation screening and association analysis of the parkin gene in Parkinson’s disease patients from South-West China. Eur Neurol 2003;49:85–89.
  126. Oliveira SA, Scott WK, Martin ER, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Ondo WG, Allen FH Jr, Scott BL, Goetz CG, Small GW, Mastaglia F, Stajich JM, Zhang F, Booze MW, Winn MP, Middleton LT, Haines JL, Pericak-Vance MA, Vance JM: Parkin mutations and susceptibility alleles in late-onset Parkinson’s disease. Ann Neurol 2003;53:624–629.
  127. Mori H, Kondo T, Yokochi M, Matsumine H, Nakagawa-Hattori Y, Miyake T, Suda K, Mizuno Y: Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 1998;51:890–892.
  128. Morett E, Bork P: A novel transactivation domain in parkin. Trends Biochem Sci 1999;24:229–231.
  129. Moynihan, TP, Ardley HC, Nuber U, Rose SA, Jones PF, Scheffner M, Markham AF, Robinson PA: RING finger and IBR motifs characterize the interaction domains of HHARI and H7-AP1 with the ubiquitin-conjugating enzymes UbcH7 and UbcH8. J Biol Chem 1999;274:30963–30967.
  130. Imai Y, Soda M, Takahashi R: Parkin suppresses protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000;275:35661–35664.
  131. Zhang Y, Gao J, Chung KKK, Huang H, Dawson VL, Dawson TM: Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 2000;97:13354–13359.
  132. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R: An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate for Parkin. Cell 2001;105:891–902.
  133. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A: Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainite excitotoxicity. Neuron 2003;37:735–749.
  134. Ren Y, Zhao J, Feng J: Parkin binds α/β tubulin and increases their ubiquitination and degradation. J Neurosci 2003;23:3316–3324.
  135. Corti O, Hampe C, Koutnikova H, Darios F, Jacquier S, Prigent A, Robinson J-C, Pradier L, Ruberg M, Mirande M, et al: The p38 subunit of the aminoacyl-tRNA synthase complex is a Parkin substrate: Linking protein biosynthesis and neurodegeneration. Hum Mol Genet 2003;12:1427–1437.
  136. Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, Lim K, Chung KK, Kehoe K, D’Adamio L, Lee JM, Cochran E, Bowser R, Dawson TM, Wolozin B: SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res 2003;117:179–189.
  137. Huynh DP, Scoles DR, Nguyen D, Pulst SM: The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet 2003;12:2587–2597.
  138. Spillantini MG, Schmidt G, Lee VMY, Trojanowski JQ, Jakes M, Goedert M: Alpha-synuclein in Lewy bodies. Nature 1997;388:839–840.
  139. Wakabayashi K, Engelender S, Yoshimoto M, Tsuji S, Ross CA, Takahashi H: Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann Neurol 2000;47:521–523.
  140. Lee HJ, Lee SJ: Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells. J Biol Chem 2002;277:48976–48983.
  141. Petrucelli L, O’Farrell C, Lochhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR: Parkin protects the against the toxicity associated with mutant α-synuclein: Proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002;36:1007–1019.
  142. Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B: Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 2003;37:911–924.
  143. Torfaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG: Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 2003;278:44405–44411.
  144. Ito T, Niwa J-i, Hishikawa N, Ishigaki S, Doyu M, Sobue G: Dorfin localizes to Lewy bodies and ubiquitylates synphilin-1. J Biol Chem 2003;278:29106–29114.
  145. Nagano Y, Yamashita H, Takahashi T, Kishida S, Nakamura T, Iseki E, Hattori N, Mizuno Y, Kikuchi A, Matsumoto M: Siah-1 facilitates ubiquitination and degradation of synphilin-1. J Biol Chem 2003;278:51504–14.
  146. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr: The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002;111:209–218.
  147. Murayama S, Mori H, Ihara Y, Bouldin TW, Suzuki K, Tomonaga M: Immunocytochemical and ultrastructural studies of lower motor neurons in amyotrophic lateral sclerosis. Ann Neurol 1990;27:137–148.
  148. Schiffer D, Autilio-Gambetti L, Chio A, Gambetti P, Giordana MT, Gullotta F, Migheli A, Vigliani MC: Ubiquitin in motor neuron disease: Study at the light and electron microscope. J Neuropathol Exp Neurol 1991;50:463–473.
  149. Hishikawa N, Niwa J, Doyu M, Ito T, Ishigaki S, Hashizuma Y, Sobue G: Dorfin localizes to the ubiquitylated inclusions in Parkinson’s disease, dementia with lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis. Am J Pathol 2003;163:609–619.
  150. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59–62.
  151. Valentine JS, Hart PJ: Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2003;100:3617–3622.
  152. Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZM, Dong L, Figlewicz DA, Shaw PJ: Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 2002;125:1522–1533.
  153. Beretta S, Sala G, Mattavelli L, Ceresa C, Casciati A, Ferri A, Carri MT, Ferrarese C: Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol Dis 2003;13:213–221.
  154. Dupuis L, Di Scala F, Rene F, De Tapia M, Oudart H, Pradat PF, Meininger V, Loeffler JP: Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J 2003;17:2091–2093.
  155. Urushitani M, Kurisu J, Tsukita K, Takahashi R: Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 2002;83:1030–1042.
  156. La Spada AR, Taylor JP: Polyglutamines placed in context. Neuron 2003;38:681–684.
  157. Michalik A, Van Broeckhoven C: Pathogenesis of polyglutamine disorders: Aggregation revisited. Hum Mol Genet 2003;12:R173–R186.
    External Resources
  158. Tsai YC, Fishman PS, Thakor NV, Oyler GA: Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 2003;278:22044–22055.
  159. The Huntington’s Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72:971–983.
  160. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP: Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90:537–548.
  161. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N: Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277:1990–1993.
  162. Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR: Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 1996;271:19385–19394.
  163. Harjes P, Wanker EE: The hunt for huntingtin function: Interaction partners tell many different stories. Trends Biochem Sci 2003;28:425–433.
  164. Lee S-J, Choi J-Y, Sung Y-M, Park H, Rhim H, Kang S: E3 ligase activity of RING finger proteins that interact with Hip-2, a human ubiquitin-conjugating enzyme. FEBS Lett 2001;503:61–64.
  165. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221–226.
  166. Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT: Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 1997;389:971–974.
  167. Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y-h, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY: Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Cell 1999;24:879–892.
  168. Koshy BT, Zoghbi HY: The CAG/polyglutamine tract diseases: Gene products and molecular pathogenesis. Brain Pathol 1997;7:927–942.
  169. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS: Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 1995;16:271–321.
  170. McKenna NJ, Lanz RB, O’Malley BW: Nuclear receptor coregulators: Cellular and molecular biology. Endocr Rev 1999;20:321–344.
  171. Lonard DM, Nawaz Z, Smith CL, O’Malley BW: The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 2000;5:939–948.
  172. Tschugguel W, Dietrich W, Zhegu Z, Stonek F, Kolbus A, Huber JC: Differential regulation of proteasome-dependent estrogen receptor alpha and beta turnover in cultured human uterine artery endothelial cells. J Clin Endocrinol Metab 2003;88:2281–2287.
  173. Li M, Miwa S, Kobayashi Y, Merry DE, Yamamoto M, Tanaka F, Doyu M, Hashizume Y, Fischbeck KH, Sobue G: Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 1998;44:249–254.
  174. Abel A, Walcott J, Woods J, Duda J, Merry DE: Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum Mol Genet 2001;10:107–116.
  175. Katsuno M, Adachi H, Inukai A, Sobue G: Transgenic mouse models of spinal and bulbar muscular atrophy (SBMA). Cytogenet Genome Res 2003;100:243–251.
  176. Moilanen A-M, Poukka H, Karvonen U, Hakli M, Janne OA, Palvimo JJ: Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 1998;18:5128–5139.
  177. Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA: Cloning and characterisation of an antrogen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J Mol Endocrinol 2002;29:41–60.
  178. Kang H-Y, Yeh S, Fujimoto N, Chang C: Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem 1999;274:8570–8576.
  179. Starita LM, Parvin JD: The multiple nuclear functions of BRCA1: Transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 2003;15:345–350.
  180. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, O’Malley BW: The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 1999;19:1182–1189.
  181. Li SH, McInnis MG, Margolis RL, Antonarakis SE, Ross CA: Novel triplet repeat containing genes in human brain: Cloning, expression, and length polymorphisms. Genomics 1993;16:572–579.
  182. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S: Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994;6:9–13.
  183. Deka R, Miki T, Yin SJ, McGarvey ST, Shriver MD, Bunker CH, Raskin S, Hundrieser J, Ferrell RE, Chakraborty R: Normal CAG repeat variation at the DRPLA locus in world populations. Am J Hum Genet 1995;57:508–511.
  184. Zhang S, Xu L, Lee J, Xu T: Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell 2002;108:45–56.
  185. Erkner A, Roure A, Charroux B, Delaage M, Holway N, Core N, Vola C, Angelats C, Pages F, Fasano L, Kerridge S: Grunge, related to human Atrophin-like proteins, has multiple functions in Drosophila development. Development 2002;129:1119–1129.
  186. Yazawa I, Nakase H, Kurisaki H: Abnormal dentatorubral-pallidoluysian atrophy (DRPLA) protein complex is pathologically ubiquitinated in DRPLA brains. Biochem Biophys Res Commun 1999;260:133–138.
  187. Wood JD, Yuan J, Margolis RL, Colomer V, Duan K, Kushi J, Kaminsky Z, Kleiderlein JJ Jr, Sharp AH, Ross CA: Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 1998;11:149–160.
  188. Ding Q, Lewis JJ, Strum KM, Dimayuga E, Bruce-Keller AJ, Dunn JC, Keller JN: Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem 2002;277:13935–13942.
  189. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T: The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 2001;276:14537–14540.
  190. Badciong JC, Haas AL: MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 2002;277:49668–49675.
  191. Xia Y, Pao GM, Chen HW, Verma IM, Hunter T: Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 2003;278:5255–5263.
  192. Courbard J-R, Fiore F, Adelaide J, Borg J-P, Birnbaum D, Ollendorf V: Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J Biol Chem 2002;277:45267–45275.
  193. Prusiner SB: Neurodegenerative diseases and prions. N Engl J Med 2001;344:1516–1526.
  194. Dimcheff DE, Portis JL, Caughey B: Prion proteins meet quality control. Trends Cell Biol 2003;13:337–340.
  195. Ma J, Lindquist S: Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 2001;98:14955–15960.
  196. Phan LK, Lin F, LeDuc CA, Chung WK, Leibel RL: The mouse mahoganoid coat color mutation disrupts a novel C3HC4 RING domain protein. J Clin Invest 2002;110:1449–1459.
  197. He L, Lu X-Y, Jolly AF, Eldridge AG, Watson SJ, Jackson PK, Barsh GS, Gunn TM: Spongiform degeneration in mahoganiod mutant mice. Science 2003;299:710–712.
  198. Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K, Agarwala KL, Hasegawa Y, Bai DS, Ishihara T, Hashikawa T, Itohara S, Cornford EM, Niki H, Yamakawa K: Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 2002;11:1251–1262.
  199. Ganesh S, Delgado-Escueta AV, Suzuki T, Francheschetti S, Riggio C, Avanzini G, Rabinowicz A, Bohlega S, Bailey J, Alonso ME, Rasmussen A, Thomson AE, Ochoa A, Prado AJ, Medina MT, Yamakawa K: Genotype-phenotype correlations for EPM2A mutations in Lafora’s progressive myoclonus epilepsy: Exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Hum Mol Genet 2002;11:1263–1271.
  200. Chan EM, Young EJ, Ianzano L, Munteanu I, Zhao X, Christopoulos CC, Avanzini G, Elia M, Ackerley CA, Jovic NJ, Bohlega S, Andermann E, Rouleau GA, Delgado-Escueta AV, Minassian BA, Scherer SW: Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 2003;35:125–127.
  201. Minassian BA: Progressive myoclonus epilepsy with polyglucosan bodies: Lafora disease. Adv Neurol 2002;89:199–210.
  202. Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ, Dunham I, Gardner R, Fong CY, Carpenter S, Jardim L, Satishchandra P, Andermann E, Snead OC 3rd, Lopes-Cendes I, Tsui LC, Delgado-Escueta AV, Rouleau GA, Scherer SW: Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 1998;20:171–174.
  203. Wang G-h, Sawai N, Kotliarova S, Kanazawa I, Nukina N: Ataxin-3, the MJD1, gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet 2000;9:1795–1803.
  204. Burnett B, Li F, Pittman RM: The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 2003;12:3195–3205.
  205. Matilla A, Gorbea C, Einum DD, Townsend J, Michalik A, van Broeckhoven C, Jensen CC, Murphy KJ, Ptacek LJ, Fu Y-C: Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum Mol Genet 2001;10:2821–2831.
  206. Terashima T, Kawai H, Fujitani M, Maeda K, Yasuda H: SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport 2002;13:2359–2364.
  207. Kuusisto E, Salminen A, Alafuzoff I: Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 2001;12:2085–2090.
  208. Kuusisto E, Salminen A, Alafuzoff I: Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: Possible role in tangle formation. Neuropathol Appl Neurobiol 2002;28:228–237.
  209. Arai T, Nonaka T, Hasegawa M, Akiyama H, Yoshida M, Hashizume Y, Tsuchiya K, Oda T, Ikeda K: Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62. Neurosci Lett 2003;342:41–44.
  210. Favit A, Grimaldi M, Alkon DL: Prevention of beta-amyloid neurotoxicity by blockade of the ubiquitin-proteasome proteolytic pathway. J Neurochem 2000;75:1258–1263.
  211. Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D: Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 1995;270:19702–19708.
  212. Gregori L, Hainfeld JF, Simon MN, Goldgaber D: Binding of amyloid beta protein to the 20 S proteasome. J Biol Chem 1997;272:58–62.
  213. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG: Proteasomal degradation of tau protein. J Neurochem 2002;83:176–185.
  214. Tofaris GK, Layfield R, Spillantini MG: Alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 2001;509:22–26.
  215. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R: Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci USA 2000;97:9902–9906.
  216. Layfield R: Does an inhibition of the ubiquitin/26S proteasome pathway of protein degradation underlie the pathogenesis of non-familial Alzheimer’s disease? Med Hypotheses 2001;56:395–399.
  217. Lindsten K, de Vrij FM, Verhoef LG, Fischer DF, van Leeuwen FW, Hol EM, Masucci MG, Dantuma NP: Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 2002;157:417–427.
  218. van Leeuwen FW, Gerez L, Benne R, Hol EM: +1 Proteins and aging. Int J Biochem Cell Biol 2002;34:1502–1505.
  219. Hope AD, de Silva R, Fischer DF, Hol EM, van Leeuwen FW, Lees AJ: Alzheimer’s associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J Neurochem 2003;86:394–404.

Article / Publication Details

First-Page Preview
Abstract of Review

Received: December 05, 2003
Accepted: February 19, 2004
Published online: September 30, 2004
Issue release date: October 2004

Number of Print Pages: 17
Number of Figures: 2
Number of Tables: 1

ISSN: 1660-2854 (Print)
eISSN: 1660-2862 (Online)

For additional information: https://www.karger.com/NDD

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.