Recent research using muscle-imaging techniques has revealed a remarkable plasticity of human muscle architecture where significant changes in fascicle lengths and angles have resulted from the chronic performance, or cessation, of strong muscle contractions. However, there is a paucity of data describing architectural adaptations to chronic stretching, disuse and immobilization, illness, and aging, and those data that are available are equivocal. Understanding their impact is important in order that effective interventions for illness/injury management and rehabilitation, and programs to improve the physical capacity of workers, the aged and athletes can be determined. Nonetheless, recent advances in myocellular research could provide a framework allowing the prediction of architectural changes in these understudied areas. Examination of the site-specific response to mechanical stress of calpain-dependent ubiquitin-proteasome proteolysis, or of the cellular response to stress after the knockout (or incapacitation) of sarcomeric and cytoskeletal proteins involved in cellular signal transduction, provides an exciting paradigm by which myocellular adaptation can be described. Such research might contribute to the understanding of macro-level changes in muscle architecture.

1.
Aagaard, P., J.L. Andersen, P. Dyhre-Poulsen, A.M. Leffers, A. Wagner, S.P. Magnusson, J. Halkjaer-Kristensen, E.B. Simonsen (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534: 613–623.
2.
Abbott, K.L., B.B. Friday, D. Thaloor, T.J. Murphy, G.K. Pavlath (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 9: 2905–2916.
3.
Abe, T., S. Fukashiro, Y. Harada, K. Kawamoto (2001) Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci 20: 141–147.
4.
Abe, T., Y. Kawakami, Y. Suzuki, A. Gunji, T. Fukunaga (1997) Effects of 20 days bed rest on muscle morphology. J Gravit Physiol 4: S10–S14.
5.
Adams, G.R., F. Haddad (1996) The relationships between IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81: 2509–2516.
6.
Adams, G.R., F. Haddad, K.M. Baldwin (1999) Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87: 1705–1712.
7.
Akima, H., S. Kuno, Y. Suzuki, A. Gunji, T. Fukunaga (1997) Effects of 20 days of bed rest on physiological cross-sectional area of human thigh and leg muscles evaluated by magnetic resonance imaging. J Gravit Physiol 4: S15–S21.
8.
Allen, D.L., S.R. Monke, R.J. Talmadge, R.R. Roy, V.R. Edgerton (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78: 1969–1976.
9.
Baker, J.H., D.E. Matsumoto (1988) Adaptation of skeletal muscle to immobilization in a shortened position. Muscle Nerve 11: 231–244.
10.
Bamman, M.M., J.R. Shipp, J. Jiang, B.A. Gower, G.R. Hunter, A. Goodman, C.L. McLafferty, R.J. Urban (2001) Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol 280: E383–E390.
11.
Bang, M.-L., T. Centner, F. Fornoff, A.J. Geach, M. Gotthardt, M. McNabb, C.C. Witt, D. Labeit, C.C. Gregorio, H. Granzier, S. Labeit (2001) The complete gene sequence of titin, expression of an unusual ∼700-kDa titin isoforms, and its interaction with obscuring identify a novel Z-line to I-band linking system. Circ Res 89: 1065–1072.
12.
Barash, I.A., L. Mathew, A.F. Ryan, J. Chen, R.L. Lieber (2004) Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol 286: C355–C364.
13.
Baroffio, A., M.L. Bochaton-Piallat, G. Gabbiani, C.R. Bader (1995) Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59: 259–268.
14.
Blake D.J., A. Weir, S.E. Newey, K.E. Davies (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82: 291–329.
15.
Blazevich, A.J., N.D. Gill, R. Bronks, R.U. Newton (2003) Training-specific muscle architecture adaptation after 5-wk concurrent training in athletes. Med Sci Sports Exerc 35: 2013–2022.
16.
Blazevich, A.J., A. Giorgi (2001) Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc 33: 1688–1693.
17.
Bleakney, R., N. Maffulli (2002) Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fitness 42: 120–125.
18.
Bodine, S.C., E. Latres, S. Baumhueter, V.K. Lai, L. Nunez, B. Clarke, W.T. Poueymirou, F.J. Panaro, E. Na, K. Dharmarajan, Z.Q. Pan, D.M. Valenzuela, T.M. DeChiara, T.N. Stitt, G.D. Yancopoulos, D.J. Glass (2001b) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708.
19.
Bodine, S.C., T.N. Stitt, M. Gonzalez, W.O. Kline, G.L. Stover, R. Bauerlein, E. Zlotchenko, A. Scrimgeour, J.C. Lawrence, D.J. Glass, G.D. Yancopoulos (2001a) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014–1019.
20.
Centner, T., J. Yano, E. Kimura, A.S. McElhinny, K. Pelin, C.C. Witt, M.L. Bang, K. Trombitas, H. Granzier, C.C. Gregorio, H. Sorimachi, S. Labeit (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306: 717–726.
21.
Chargé, S.B., M.A. Rudnicki (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209–238.
22.
Church, J.C.T., R.F.X. Noronha, D.B. Allbrook (1966) Satellite cells and skeletal muscle regeneration. Br J Surg 53: 638–642.
23.
Coghill, I.D., S. Brown, D.L. Cottle, M.J. McGrath, P.A. Robinson, H.H. Nandurkar, J.M. Dyson, C.A. Mitchell (2003) FHL3 is an actin-binding protein that regulates α-actinin-mediated actin bundling. J Biol Chem 278: 24139–24152.
24.
Cooper, R.N., S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham, G.S. Butler-Browne (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112: 2895–2901.
25.
Cornelison, D.D., B.B. Olwin, M.A. Rudnicki, B.J. Wold (2000) MyoD(–/–) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol 224: 122–137.
26.
Dedieu, S., S. Poussard, B. Mazères, F. Grise, E. Dargelos, P. Cottin, J.-J. Brustis (2004) Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp Cell Res 292: 187–200.
27.
Delling, U., J. Tureckova, H.W. Lim, L.J. De Windt, P. Rotwein, J.D. Molkentin (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20: 6600–6611.
28.
Feasson, L., D. Stockholm, D. Freyssenet, I. Richard, S. Duguez, J.S. Beckmann, C. Denis (2002) Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 543: 297–306.
29.
Franco, S.J., M.A. Rodgers, B.J. Perrin, J. Han, D.A. Bennin, D.R. Critchley, A. Huttenlocher (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6: 977–983.
30.
Freemont, P.S. (2000) Ubiquitination: RING for destruction? Curr Biol 10: 84–87.
31.
Gans, C., W.J. Bock (1965) The functional significance of muscle architecture – a theoretical analysis. Ergeb Anat Entwicklungsgesch 38: 115–142.
32.
Glading, A., P. Chang, D.A. Lauffenburger, A. Well (2000) Epidermal growth factor receptor activation of calpain is required for fibroblast motility, and occurs via an ERK/MAP kinase signalling pathway. J Biol Chem 275: 2390–2398.
33.
Goldspink, D.F., V.M. Cox, S.K. Smith, L.A. Eaves, N.J. Osbaldeston, D.M. Lee, D. Mantle (1995) Muscle growth in response to mechanical stimuli. Am J Physiol 31: E288–E297.
34.
Gomes, M.D., S.H. Lecker, R.T. Jagoe, A. Navon, A.L. Goldberg (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98: 14440–14445.
35.
Gotthardt, M., R.E. Hammer, N. Hubner, J. Monti, C.C. Witt, M. McNabb, J.A. Richardson, H. Granzier, S. Labeit, J. Herz (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem 278: 6059–6065.
36.
Granger, B.L., E. Lazarides (1979) Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18: 1053–1063.
37.
Gregorio, C.C., K. Trombitas, T. Centner, B. Kolmerer, G. Stier, K. Kunke, K. Suzuki, F. Obermayr, B. Herrmann, H. Granzier, H. Sorimachi, S. Labeit (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 143: 1013–1027.
38.
Grounds, M.D., K.L. Garrett, M.C. Lai, W.E. Wright, M.W. Beilharz (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267: 99–104.
39.
Guttridge, D.C., M.W. Mayo, L.V. Madrid, C.Y. Wang, A.S. Baldwin (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289: 2363–2366.
40.
Häkkinen, K., A. Pakarinen (1993) Muscle strength and serum hormones in middle-aged and elderly men and women. Acta Physiol Scand 148: 199–207.
41.
Hasselgren, P.O., J.E. Fischer (2001) Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233: 9–17.
42.
Hayat, A., C. Tardieu, J.C. Tabary, C. Tabary (1978) Effects of denervation on the reduction of sarcomere number in cat soleus muscle immobilized in shortened position during seven days. J Physiol Paris 74: 563–567.
43.
Hikida, R.S., S. Van Nostran, J.D. Murray, R.S. Staron, S.E. Gordon, W.J. Kraemer (1997) Myonuclear loss in atrophied soleus muscle fibers. Anat Rec 247: 350–354.
44.
Huang, J., N.E. Forsberg (1998) Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci USA 95: 12100–12105.
45.
Hunter, R.B., E.J. Stevenson, A. Koncarevic, H. Mitchell-Felton, D.A. Essig, S.C. Kandarian (2002) Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16: 529–538.
46.
Huttenlocher, A., S.P. Palececk, Q. Lu, W. Zhang, R.L. Mellgren, D.A. Lauffenburger, M.H. Ginsberg, A.G. Horowitz (1997) Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272: 32719–32722.
47.
Ikemoto, M., T. Nikawa, S. Takeda, C. Watanabe, T. Kitano, K.M. Baldwin, R. Izumi, I. Nonaka, T. Towatari, S. Teshima, K. Rokutan, K. Kishi (2001) Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway. FASEB J 15: 1279–1281.
48.
Izquierdo, M., K. Häkkinen, A. Antón, M. Garrues, J. Ibañez, M. Ruesta, E.M. Gorostiaga (2001) Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc 33: 1577–1587.
49.
Izquierdo, M., J. Ibañez, E. Gorostiaga, M. Garrues, A. Zúñiga, A. Antón, J.L. Larrión, K. Häkkinen (1999) Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand 167: 57–68.
50.
Jagoe, R.T., A.L. Goldberg (2001) What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4: 183–190.
51.
Jarvinen M.J., S.A. Einola, E.O. Virtanen (1992) Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle. Arch Phys Med Rehabil 73: 253–257.
52.
Jobin, C., S.B. Sartor (2000) The IκB/NF-κB system: a key determinant of mucosal inflammation and protection. Am J Physiol 278: C451–C462.
53.
Joulia, D., H. Bernardi, V. Garandel, F. Rabenoelina, B. Vernus, G. Cabello (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286: 263–275.
54.
Kandarian, S.C., E.J. Stevenson (2002) Molecular events in skeletal muscle during disuse atrophy. Exerc Sport Sci Rev 30: 111–116.
55.
Kawakami, Y., T. Abe, T. Fukunaga (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74: 2740–2744.
56.
Kawakami, Y., T. Abe, S.-Y. Kuno, T. Fukunaga (1995) Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol 72: 37–43.
57.
Kawakami, Y., H. Akima, K. Kubo, Y. Muraoka, H. Hasegawa, M. Kouzaki, M. Imai, Y. Suzuki, A. Gunji, H. Kanehisa, T. Fukunaga (2001) Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 84: 7–12.
58.
Kawakami, Y., Y. Muraoka, K. Kubo, Y. Suzuki, T. Fukunaga (2000) Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol 7: 53–60.
59.
Kemp, T.J., T.J. Sadusky, F. Saltisi, N. Carey, J. Moss, S.Y. Yang, D.A. Sassoon, G. Goldspink, G.R. Coulton (2000) Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genome 66: 229–241.
60.
Klitgaard, H., M. Mantoni, S. Schiaffino, S. Ausoni, L. Gorza, C. Laurent-Winter, P. Schnohr, B. Saltin (1990) Function, morphology and protein expression of aging skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140: 41–54.
61.
Kontrogianni-Konstantopoulos, A., D.H. Catino, J.C. Strong, W.R. Randall, R.J. Bloch (2004) Obscurin regulates the organization of myosin into A bands. Am J Physiol 287: C209–C217.
62.
Kubo, K., H. Kanehisa, K. Azuma, M. Ishizu, S-.Y. Kuno, M. Okada, T. Fukunaga (2003a) Muscle architectural characteristics in women aged 20–79 years. Med Sci Sports Exerc 35: 39–44.
63.
Kubo, K., H. Kanehisa, K. Azuma, M. Ishizu, S.-Y. Kuno, M. Okada, T. Fukunaga (2003b) Muscle architectural characteristics in young and elderly men and women. Int J Sports Med 24: 125–130.
64.
Kulkarni, S., T.C. Saido, K. Suzuki, J.E. Fox (1999) Calpain mediates integrin-induced signalling at a point upstream of Rho family members. J Biol Chem 274: 21265–21275.
65.
Kumagai, K., T. Abe, W.F. Brechue, T. Ryushi, S. Takano, M. Mizuno (2000) Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 88: 811–816.
66.
Kumar, A., A.M. Boriek (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17: 386–396.
67.
Kumar, A., N. Khandelwal, R. Malya, M.B. Reid, A.M. Boriek (2004) Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18: 102–113.
68.
Lang, J.M., K.A. Esser, E.E. Dupont-Versteegden (2004) Altered activity of signalling pathways in diaphragm and tibialis anterior muscle of dystrophic mice. Exp Biol Med 229: 503–511.
69.
Langley, B., M. Thomas, A. Bishop, M. Sharma, S. Gilmour, R. Kambadur (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277: 49831–49840.
70.
Leterme, D., C. Cordonnier, Y. Mounier, M. Falempin (1994) Influence of chronic stretching upon rat soleus muscle during non-weight-bearing conditions. Eur J Physiol 429: 274–279.
71.
Li, H., E.K. Ng, S.M. Lee, M. Kotaka, S.K. Tsui, C.Y. Lee, K.P. Fung, M.M. Waye (2001) Protein-protein interaction of FHL3 with FHL2 and visualization of their interaction by green fluorescent proteins (GFP) two-fusion fluorescence resonance energy transfer (FRET). J Cell Biochem 80: 293–303.
72.
Li, Y.P., M.B. Reid (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol 279: R1165–R1170.
73.
Li, Y.P., R.J. Schwartz, I.D. Waddell, B.R. Holloway, M.B. Reid (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J 12: 871–880.
74.
Lynn, R., D.L. Morgan (1994) Decline running produced more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol 77: 1439–1444.
75.
Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, C. Cognard (2004) Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Exp Cell Res 15: 363–379.
76.
Mayhew, T.P., J.M. Rothstein, S.D. Finucane, R.L. Lamb (1995) Muscular adaptation to concentric and eccentric exercise at equal power levels. Med Sci Sports Exerc 27: 868–873.
77.
McElhinny, A.S., K. Kakinuma, H. Sorimachi, S. Labeit, C.C. Gregorio (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157: 125–136.
78.
McPherron, A.C., A.M. Lawler, S.J. Lee (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90.
79.
Miller, G., H. Musa, M. Gautel, M. Peckham (2003) A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis. J Cell Sci 116: 4811–4819.
80.
Morse, C.I., J.M. Thom, K.M. Birch, M.V. Narici (2005) Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand 183: 291–298.
81.
Mues, A., P.F. Van der Ven, P. Young, D.O. Fürst, M. Gautel (1998) Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 428: 111–114.
82.
Muhl, Z.F. (1982) Active length-tension relation and the effect of muscle pinnation of fiber lengthening. J Morphol 173: 285–292.
83.
Mykles, D.L., M.F. Haire (1991) Sodium dodecyl sulphate and heat induce two distinct forms of lobster muscle multicatalytic proteinase: The heat-activated form degrades myofibrillar proteins. Arch Biochem Biophys 288: 543–551.
84.
Narici, M., P. Cerretelli (1998) Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 5: 73–74.
85.
Narici, M.V., C.N. Maganaris, N.D. Reeves, P. Capodaglio (2003) Effect of ageing on human muscle architecture. J Appl Physiol 95: 2229–2234.
86.
Nicholas, G., M. Thomas, B. Langley, W. Somers, K. Patel, C.F. Kemp, M. Sharma, R. Kambadur (2002) Titin-cap associates with, and regulates secretion of, myostatin. J Cell Physiol 193: 120–131.
87.
Nicks, D.K., W.M. Beneke, R.M. Key, B.F. Timson (1989) Muscle fiber size and number following immobilisation atrophy. J Anat 163: 1–5.
88.
Otten, E. (1988) Concepts and models of functional architecture in skeletal muscle. Exerc Sport Sci Rev 16: 89–137.
89.
Pallafacchina, G., E. Calabria, A.L. Serrano, J.M. Kalhovde, S. Schiaffino (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci USA 99: 9213–9218.
90.
Paulin, D., Z. Li (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301: 1–7.
91.
Potter, D.A., J.S. Tirnauer, R. Janssen, D.E. Croall, C.N. Hughes, K.A. Fiacco, J.W. Mier, M. Maki, I.M. Herman (1998) Calpain mediates integrin-induced signalling at a point upstream of Rho family members. J Biol Chem 274: 21265–21275.
92.
Richardson, F.L., M.H. Stromer, T.W. Huiatt, R.M. Robson (1981) Immunoelectron and immunofluorescence localization of desmin in mature avian muscles. Eur J Cell Biol 26: 91–101.
93.
Russell, M.W., M.O. Raeker, K.A. Korytkowski, K.J. Sonneman (2002) Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 282: 237–246.
94.
Rutherford, O.M., D.A. Jones (1992) Measurement of fiber pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol 65: 433–437.
95.
Sanger, J.W., P. Chowrashi, N.C. Shaner, S. Spalthoff, J. Wang, N.L. Freeman, J.M. Sanger (2002) Myofibrillogenesis in skeletal muscle cells. Clin Orthop Relat Res 403S: S153–S162.
96.
Schultz, E. (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175: 84–94.
97.
Schultz, E., D.L. Jaryszak, C.R. Valliere (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8: 217–222.
98.
Schultz, R.A., K.E. Yutzey (2004) Calcineurin signalling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol 266: 1–16.
99.
Schumacher, B., J. Keller, I. Hvid (1994) Distraction effects on muscle: leg lengthening studied in rabbits. Acta Orthop Scand 65: 647–650.
100.
Semsarian, C., M.-J. Wu, Y.-K. Ju, T. Marciniec, T. Yeoh, D.G. Allen, R.P. Harvey, R.M. Graham (1999) Skeletal muscle hypertrophy mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400: 576–581.
101.
Shah, S.B., D. Peters, K.A. Jordan, D.J. Milner, J. Fridén, Y. Capetanaki, R. Lieber (2001) Sarcomere number regulation maintained after immobilization in desmin-null mouse skeletal muscle. J Exp Biol 204: 1703–1710.
102.
Shah, S.B., F.-C. Su, K. Jordan, D.J. Milner, J. Fridén, Y. Capetanaki, R. Lieber (2002) Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. J Exp Biol 205: 321–325.
103.
Sinha-Hikim, I., S.M. Roth, M.I. Lee, S. Bhasin (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol 285: E197–E205.
104.
Smith, C.K., M.J. Janney, R.E. Allen (1994) Temporal expression of myogenic regulatory genes during activation, proliferation and differentiation of rat skeletal muscle satellite cells. J Cell Physiol 159: 379–385.
105.
Stupka, N., M.A. Tarnopolsky, N.J. Yardley, S.M. Phillips (2001) Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 91: 1669–1678.
106.
Tabary, J.C., C. Tabary, C. Tardieu, G. Tardieu, G. Goldspink (1972) Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 224: 231–244.
107.
Taylor, R.G., C. Tassy, M. Briand, N. Robert, Y. Briand, A. Ouali (1995) Proteolytic activity of proteasome on myofibrillar structures. Mol Biol Rep 21: 71–73.
108.
Thomas, M., B. Langley, C. Berry, M. Sharma, S. Kirk, J. Bass, R. Kambadur (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 2275: 40235–40243.
109.
Thompson, H.S., S.P. Scordilis (1994) Ubiquitin changes in human biceps muscle following exercise-induced damage. Biochem Biophys Res Commun 204: 1193–1198.
110.
Wang, J., K. Walsh (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273: 359–361.
111.
Williams, P.E. (1990) Use of intermittent stretch in the prevention of serial sarcomere loss in immobilised muscle. Ann Rheum Dis 49: 316–317.
112.
Williams, P.E., G. Goldspink (1971) Longitudinal growth of striated muscle fibers. J Cell Sci 9: 751–767.
113.
Williams, P.E., G. Goldspink (1978) Changes in sarcomere length and physiological properties in immobilized muscle. J Anat 127: 459–468.
114.
Wilson, E.M., J. Tureckova, P. Rotwein (2004) Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation. Mol Biol Cell 15: 497–505.
115.
Yablonka-Reuveni, Z., A.J. Rivera (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164: 588–603.
116.
Yamashita-Goto, K., R. Okuyama, M. Honda, K. Kawasaki, K. Fujita, Y. Yamata, I. Nonaka, Y. Ohira, T. Yoshioka (2001) Maximal and submaximal forces of slow fibers in human soleus after bed rest. J Appl Physiol 91: 417–424.
117.
Young, P., E. Ehler, M. Gautel (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154: 123–136.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.