Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Microscopic Imaging

Principles of Multiphoton Microscopy

Dunn K.W. · Young P.A.

Author affiliations

Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Ind., USA

Related Articles for ""

Nephron Exp Nephrol 2006;103:e33–e40

Do you have an account?

Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information












By signing up for MyKarger you will automatically participate in our year-End raffle.
If you Then Do Not wish To participate, please uncheck the following box.

Yes, I wish To participate In the year-End raffle And Get the chance To win some Of our most interesting books, And other attractive prizes.


I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

For eJournal Archive and eJournal Backfiles information please contact service@karger.com

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Microscopic Imaging

Published online: March 13, 2006
Issue release date: March 2006

Number of Print Pages: 1
Number of Figures: 2
Number of Tables: 1


eISSN: 1660-2129 (Online)

For additional information: https://www.karger.com/NEE

Abstract

Multiphoton fluorescence microscopy is a powerful, important tool in biomedical research that offers low photon toxicity and higher spatial and temporal resolution than other in vivo imaging modalities. The capability to collect images hundreds of micrometers into biological tissues provides an invaluable tool for studying cellular and subcellular processes in the context of tissues and organs in living animals. Multiphoton microscopy is based upon two-photon excitation of fluorescence that occurs only in a sub-femtoliter volume at the focus; by scanning the focus through a sample, 2- and 3-dimensional images can be collected. The complex 3-dimensional organization of the kidney makes it especially appropriate for multiphoton microscopic analysis, which has been used to characterize numerous aspects of renal physiology and pathophysiology in living rats and mice. However, the ability to collect fluorescence images deep into biological tissues raises unique problems not encountered in other forms of optical microscopy, including issues of probe access, and tissue optics. Future improvements in multiphoton fluorescence microscopy will involve optimizing objectives for the unique characteristics of multiphoton fluorescence imaging, improving the speed at which images may be collected and extending the depth to which imaging may be conducted.

© 2006 S. Karger AG, Basel


References

  1. Andressen V, Egner A, Hell S: Time-multiplexed multifocal multiphoton microscope. Opt Lett 2001;26:75–77.
  2. Brown E, Campbell R, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain R: In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 2001;7: 864–868.
  3. Centonze V, White J: Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 1998;75:2015–2024.
  4. Curley P, Ferguson A, White J, Amos W: Application of a femtosecond self-sustaining mode-locked Ti: sapphire laser to the field of laser scanning confocal microscopy. Opt Quantum Electron 1992;24:851–855.
    External Resources
  5. Denk W, Strickler J, Webb W: Two-photon laser scanning microscope. Science 1990;248:73–76.
  6. Denk W, Svoboda K: Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 1997;18:351–357.
  7. Dunn K, Sandoval R, Kelly K, Dagher P, Tanner G, Atkinson S, Bacallao R, Molitoris B: Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol 2002;282:C905–C916.
  8. Egner A, Andressen V, Hell S: Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment. J Microsc 2002;206:24–32.
  9. Fan GY, Fujisaki H, Miyawaki A, Tsay RK, Tsien R, Ellisman M: Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys J 1999;76:2412–2420.
  10. Goeppert-Mayer M: İber Elementarakte mit zwei Quantensprungen. Göttinger Dissertation. Ann Phys 1931;9:273–294.
  11. Helmchen F, Svoboda K, Denk W, Tank D: In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 1999;2:989–996.
  12. Hopt A, Neher E: Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 2001;80:2029–2036.
  13. Jonkman J, Stelzer E: Resolution and contrast in confocal and two-photon microscopy; in Diaspro A (ed): Confocal and Multiphoton Microscopy. New York, Wiley, 2002, pp 101–126.
  14. Kaiser W, Garret C: Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 1961;7:229–231.
  15. Kim C, Buehler C, So P: High-speed two-photon scanning microscope. Appl Opt 1999;38:6004–6009.
    External Resources
  16. Kleinfeld D, Mitra P, Helmchen F, Denk W: Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci USA 1998;95:15741–15746
  17. Koester H, Baur D, Uhl R, Hell S: Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys J 1999;77:2226–2236.
  18. Konig K: Multiphoton microscopy in life sciences. J Microsc 2000;200:83–104.
  19. Konig K, So P, Mantulin W, Gratton E: Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt Lett 1997;22:135–136.
    External Resources
  20. Marsh P, Burns D, Girkin J: Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 2003;11:1123–1130
    External Resources
  21. Masters B, So P, Gratton E: Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 1997;72:2405–2412.
  22. McCain W: Excited state symmetry assignment through polarized two-photon absorption studies of fluids. J Chem Phys 1970;55:2789–2796.
    External Resources
  23. Mik E, van Leeuwen T, Raat N, Ince C: Quantitative determination of localized oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. J Appl Phys 2004;97:1962–1969.
  24. Nguyen QT, Callamaras N, Hsieh C, Parker I: Construction of a two-photon microscope for video rate Ca2+ imaging. Cell Calcium 2001;30:383–393.
  25. Nielsen T, Fricke M, Hellweg D, Andresen P: High efficiency beam splitter for multifocal multiphoton microscopy. J Microsc 2001;201:368–376.
  26. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S: Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 2001;111:29–37.
  27. Patterson G, Piston D: Photobleaching in two-photon excitation microscopy. Biophys J 2000;78:2159–2162.
  28. Peti-Peterdi J: Multiphoton imaging of renal tissues in vitro. Am J Physiol Renal Physiol 2005;288:F1079–F1083.
    External Resources
  29. Peti-Peterdi J, Fintha A, Fuson A, Tousson A, Chow R: Real-time imaging of renin release in vitro. Am J Physiol Renal Physiol 2004;287:F329–F335.
    External Resources
  30. Phillips C, Arend L, Filson A, Kojetin D, Filson A, Clendenon J, Fang S, Dunn K: 3-D imaging of embryonic mouse kidney by two-photon microscopy. Am J Pathol 2001;158:49–55.
  31. Phillips C, Miller K, Filson A, Nurnberger J, Clendenon J, Cook G, Dunn K, Overbeek P, Gattone V, Bacallao R: Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol 2004;15:1744–1755.
  32. Piston D, Masters B, Webb W: Three dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J Microsc 1995;178:20–27.
  33. Sandoval R, Kennedy M, Low P, Molitoris B: Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol 2004;287:C257–C259.
    External Resources
  34. Schonle A, Hell S: Heating by absorption in the focus of an objective lens. Opt Lett 1998;23:325–327.
    External Resources
  35. Sherman L, Ye J, Albert O, Norris T: Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J Microsc 2002;206:65–71.
  36. Squirrell J, Wokosin D, White J, Bavister B: Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotech 1999;17:763–767.
  37. Sutton T, Kelly K, Mang H, Plotkin Z, Sandoval R, Dagher P: Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol 2005;288:F91–F97.
  38. Sutton T, Mang H, Yoder M, Campos S, Sandoval R, Molitoris B: Injury of the renal microvascular endothelium alters barrier function following ischemia. Am J Physiol 2003;285:F191–F198.
  39. Tanner G, Sandoval R, Dunn K: Two-photon in vivo microscopy of sulfonefluorescein secretion in normal and cystic rat kidneys. Am J Physiol Renal Physiol 2004;286:F152–F160.
    External Resources
  40. Tanner G, Sandoval R, Molitoris B, Bamburg J, Ashworth S: Micropuncture gene delivery and intravital two-photon visualization of protein expression in rat kidney. Am J Physiol Renal Physiol 2005;289:F638–F643.
    External Resources
  41. Xu C, Zipfel W, Shear J, Williams R, Webb W: Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 1996;93:10763–10768.
  42. Zipfel W, Williams R, Christie R, Nikitin A, Hyman B, Webb W: Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 2003a;100:7075–7080.
  43. Zipfel W, Williams R, Webb W: Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotech 2003b;21:1369–1377.

Article / Publication Details

First-Page Preview
Abstract of Microscopic Imaging

Published online: March 13, 2006
Issue release date: March 2006

Number of Print Pages: 1
Number of Figures: 2
Number of Tables: 1


eISSN: 1660-2129 (Online)

For additional information: https://www.karger.com/NEE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.