Inflammation is a highly regulated process with common but also specific characteristics in each tissue affected. Recruitment of leukocytes from the blood to the injured tissue is an important early step in the inflammatory cascade. This review highlights the role of connexins (Cxs) in the regulation of both acute and chronic inflammatory processes. Cxs form gap junction channels that provide a cytoplasmic continuity between adjacent cells allowing the intercellular exchange of ions and metabolites. Their structural halves form connexons or hemichannels. Each of them consists of 6 Cx proteins and hemichannels not taking part in gap junction formation but facilitating the release of small molecules such as ATP. Based on the differential distribution of various Cxs in different tissues such as the brain, lung capillaries and large blood vessels, our aim was to analyze the specific roles of Cxs in the inflammatory process in these tissues. Three typical sites of inflammation were chosen to shed light on similarities and differences in several types of responses: (1) atherosclerosis as a model for chronic inflammation, (2) the lung as an example of acute inflammation and (3) the ‘immune-privileged’ environment of the brain to highlight specific reactions of the vasculature to ischemic damage and inflammation at this site.

1.
Sàez JC, Berthoud VM, Brãnes MC, Martinez AD, Bayer EC: Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003;83:1359–1400.
2.
Harris AL: Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001;34:325–472.
3.
Spray DC, Ye ZC, Ranson BR: Functional connexin ‘hemichannels’: a critical appraisal. Glia 2006;54:758–773.
4.
Goldberg GS, Lampe PD, Nicholson BJ: Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1999;1:457–459.
5.
Kanaporis G, Mese G, Valiuniene L, White TW, Brink PR, Valiunas V: Gap junction channels exhibit connexin-specific permeability to cyclic nucleotides. J Gen Physiol 2008;131:293–305.
6.
Willecke K, Eiberger J, Degen J, Eckhadt D, Roumualdi A, Güldenagel M, Deutsch U, Söhl G: Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 2002;383:725–737.
7.
Laird DW: Life cycle of connexins in health and disease. Biochem J 2006;394:527–543.
8.
De Maio A, Vega VL, Contreras JE: Gap junctions, homeostasis, and injury. J Cell Physiol 2002;191:269–282.
9.
Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR: Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 2005;1711:197–207.
10.
Haefliger JA, Nicod P, Meda P: Contribution of connnexins to the function of the vascular wall. Cardiovasc Res 2004;62:345–356.
11.
de Wit C, Hoepfl B, Wolfle SE: Endothelial mediators and communication through vascular gap junctions. Biol Chem 2006;387:3–9.
12.
Figueroa XF, Duling BR: Gap junctions in the control of vascular function. Antioxid Redox Signal 2009;11:251–266.
13.
Brisset AC, Isakson BE, Kwak BR: Connexins in vascular physiology and pathology. Antioxid Redox Signal 2009;11:267–282.
14.
Figueroa XF, Isakson BE, Duling BR: Vascular gap junctions in hypertension. Hypertension 2006;48:804–811.
15.
de Wit C, Boettcher M, Schmidt VJ: Signaling across the myoendothelial gap junctions – fact or fiction? Cell Commun Adhes 2008;15:231–245.
16.
Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F: What’s, where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 2009;36:67–76.
17.
Gabriels JE, Paul DL: Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 1998;83:636–643.
18.
Oviedo-Orta E, Errington RJ, Evans WH: Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol Int 2002;26:253–263.
19.
Zahler S, Hoffmann A, Gloe T, Pohl U: Gap junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J Leukoc Biol 2003;73:118–126.
20.
Eugenin EA, Branes MC, Berman JW, Sáez JC: TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 2003;170:1320–1328.
21.
Scerri I, Tabary O, Dudez T, Jacquot J, Foglia B, Suter S, Chanson M: Gap junctional communication does not contribute to the interaction between neutrophils and airway epithelial cells. Cell Commun Adhes 2006;13:1–12.
22.
Glass CK, Witztum JL: Atherosclerosis: the road ahead. Cell 2001;104:503–516.
23.
Libby P: Inflammation in atherosclerosis. Nature 2002;420:868–874.
24.
Hansson GK: Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 2005;352:1685–1695.
25.
Tedgui A, Mallat Z: Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006;86:515–581.
26.
Weber C, Zernecke A, Libby P: The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008;8:802–815.
27.
Ross R: Cell biology of atherosclerosis. Annu Rev Physiol 1995;57:791–804.
28.
Burke AP, Virmani R: Pathophysiology of acute myocardial infarction. Med Clin North Am 2007;91:553–572.
29.
Burnier L, Fontana P, Angelillo-Scherrer A, Kwak BR: Intercellular communication in atherosclerosis. Physiology (Bethesda) 2009;24:36–44.
30.
Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F: Altered pattern of vascular connexin expression in atherosclerosic plaques. Arterioscler Thromb Vasc Biol 2002;22:225–230.
31.
Yeh HI, Lu CS, Wu YJ, Chen CC, Hong RC, Ko YS, Shiao MS, Severs NJ, Tsai CH: Reduced expression of endothelial connexin37 and connexin40 in hyperlipidemic mice: recovery of connexin37 after 7-day simvastatin treatment. Arterioscler Thromb Vasc Biol 2003;23:1391–1397.
32.
Isakson BE, Kronke G, Kadl A, Leitinger N, Duling BR: Oxidized phospholipids alter vascular connexin expression, phosphorylation, and heterocellular communication. Arterioscler Thromb Vasc Biol 2006;26:2216–2221.
33.
Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR: Connexin 37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 2006;12:950–954.
34.
Evans WH, De Vuyst E, Leybaert L: The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 2006;397:1–14.
35.
Derouette JP, Desplantez T, Wong CW, Roth I, Kwak BR, Weingart R: Functional differences between human Cx37 polymorphic hemichannels. J Mol Cell Cardiol 2009;46:499–507.
36.
Derouette JP, Wong C, Burnier L, Morel S, Sutter E, Galan K, Brisset AC, Roth I, Chadjichristos CE, Kwak BR: Molecular role of Cx37 in advanced atherosclerosis: a micro-array study. Atherosclerosis 2009;206:69–76.
37.
Hou CJ, Tsai CH, Yeh HI: Endothelial connexins are down-regulated by atherogenic factors. Front Biosci 2008;13:3549–3557.
38.
Yeh HI, Chang HM, Lu WW, Lee YN, Ko YS, Severs NJ, Tsai CH: Age-related alteration of gap junction distribution and connexin expression in rat aortic endothelium. J Histochem Cytochem 2000;48:1377–1389.
39.
de Wit C, Ross F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U: Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 2000;86:649–655.
40.
Krattinger N, Capponi A, Mazzolai L, Aubert JF, Caille D, Nicod P, Waeber G, Meda P, Haefliger JA: Connexin40 regulates renin production and blood pressure. Kidney Int 2007;72:814–822.
41.
Wagner C, de Witt C, Kurtz L, Grunberger C, Kurtz A, Schweda F: Connexin 40 is essential for the pressure control of renin synthesis and secretion. Circ Res 2007;100:556–563.
42.
Firouzi M, Kok B, Spiering W, Busjahn A, Bezzina CR, Ruijter JM, Koeleman BP, Schipper M, Groenewegen WA, Jongsma HJ, de Leeuw PW: Polymorphisms in human connexin40 gene promoter are associated with increased risk of hypertension in men. J Hypertens 2006;24:325–330.
43.
Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de Wit C, Yang Z, Roth I, Bacchetta M, Viswambharan H, Foglia B, Dudez T, van Kempen MJ, Coenjaerts FE, Miquerol L, Deutsch U, Jongsma HJ, Chanson M, Kwak BR: Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation 2010;121:123–131.
44.
Zernecke A, Bidzhekov K, Ozüyaman B, Fraemohs L, Liehn EA, Luscher-Frizlaff JM, Luscher B, Schrader J, Weber C: CD73/ecto-5′-nucleotidase protects against vascular inflammation and neointima formation. Circulation 2006;113:2120–2127.
45.
Lennon PF, Taylor CT, Stahl GL, Colgan SP: Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 1998;188:1433–1443.
46.
Narravula S, Lennon PF, Mueller BU, Colgan CP: Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 2000;165:5262–5268.
47.
Koszalka P, Ozuyaman B, Huo Y, Zernecke A, Flogel U, Braun N, Buchheiser A, Decking UK, Smith ML, Sévigny J, Fear A, Weber AA, Molojavyi A, Ding Z, Weber C, Ley K, Zimmermann H, Gödecke A, Schrader J: Targeted disruption of CD73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 2004;95:814–821.
48.
Blackburn JP, Peters NS, Yeh HI, Rothery S, Green CR, Severs NJ: Upregulation of connexin43 gap junctions during early stages of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1995;15:1219–1228.
49.
Polacek D, Bech F, McKinsey, Davies PF: Connexin43 gene expression in the rabbit arterial wall: effects of hypercholesterolemia, balloon injury and their combination. J Vasc Res 1996;34:19–30.
50.
Kwak BR, Veillard N, Pelli G, Mulhaupt F, James RW, Chanson M, Mach F: Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Circulation 2003;107:1033–1039.
51.
Wong CW, Burger F, Pelli G, Mach F, Kwak BR: Dual benefit of reduced Cx43 on atherosclerosis in LDL receptor-deficient mice. Cell Commun Adhes 2003;10:395–400.
52.
Boitano S, Safdar Z, Welsh DG, Bhattacharya J, Koval M: Cell-cell interactions in regulating lung function. Am J Physiol Lung Cell Mol Physiol 2004;287:L455–L459.
53.
Foglia B, Scerri I, Dudez T, Chanson M: The role of connexins in the respiratory epithelium; in Harris A, Locke D (eds): Connexin: A Guide. Totowa, Humana Press, 2009, pp 359–370.
54.
Johnson LN, Koval M: Cross-talk between pulmonary injury, oxidant stress and gap junctional communication. Antioxid Redox Signal 2009;11:355–367.
55.
Lansley AB, Sanderson MJ, Dirksen ER: Control of the beat cycle of respiratory tract cilia by Ca2+ and cAMP. Am J Physiol 1992;263:L232–L242.
56.
Boitano S, Dirksen ER, Sanderson MJ: Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 1992;258:292–295.
57.
Boitano S, Dirksen ER, Evans WH: Sequence-specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium 1998;23:1–9.
58.
Martin FJ, Prince AS: TLR2 regulates gap junction intercellular communication in airway cells. J Immunol 2008;180:4986–4993.
59.
Abraham V, Chou ML, George P, Pooler P, Zaman A, Savani RC, Koval M: Heterocellular gap junctional communication between alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001;280:L1085–L1093.
60.
Guo Y, Martinez-Williams C, Yellowley CE, Donahue HJ, Rannels DE: Connexin expression by alveolar epithelial cells is regulated by extracellular matrix. Am J Physiol Lung Cell Mol Physiol 2001;280:L191–L202.
61.
Ichimura H, Parthasarathi K, Lindert J, Bhattacharya J: Lung surfactant secretion by interalveolar Ca2+ signaling. Am J Physiol Lung Cell Mol Physiol 2006;291: L596–L601.
62.
Isakson BE, Seedorf GJ, Lubman RL, Evans WH, Boitano S: Cell-cell communication in heterocellular cultures of alveolar epithelial cells. Am J Respir Cell Mol Biol 2003;29:552–561.
63.
Patel AS, Reigada D, Mitchell CH, Gates SR, Marguies SS, Koval M: Paracrine stimulation of surfactant secretion by extracellular ATP in response to mechanical deformation. Am J Physiol Lung Cell Mol Physiol 2005;289:L489–L496.
64.
Ashino Y, Ying X, Dobbs LG, Battacharya J: [Ca2+]i oscillation regulate type II cell exocytosis in the pulmonary alveolus. Am J Physiol Lung Cell Mol Physiol 2000;279:L5–L13.
65.
Isakson BE, Evans WH, Boitano S: Intercellular Ca2+ signaling in alveolar epithelial cells through gap junctions and by extracellular ATP. Am J Physiol Lung Cell Mol Physiol 2001;280:L221–L228.
66.
Homolya L, Steinberg TH, Boucher RC: Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 2000;150:1349–1360.
67.
Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M: Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 2009;41:525–534.
68.
Wiszniewski L, Sanz J, Scerri I, Gasparotto E, Dudez T, lacroix JS, Suter S, Gallati S, Chanson M: Functional expression of connexin30 and connexin31 in the polarized human airway epithelium. Differentiation 2007;75:382–392.
69.
Chanson M, Berclaz PY, Dudez T, Scerri I, Wernke-Dollries K, Pizurki L, Pavirani A, Fiedler M, Suter S: Regulation of gap junctional communication by a pro-inflammatory cytokine in cystic fibrosis transmembrane conductance regulator-expressing but not cystic fibrosis airway cells. Am J Pathol 2001;158:1775–1784.
70.
Huang S, Dudez T, Scerri I, Thomas MA, Giepmans BNG, Suter S, Chanson M: Defective activation of c-Src in CF airway epithelial cells results in loss of TNF-α-induced gap junction regulation. J Biol Chem 2003;278:8326–8332.
71.
Huang S, Jornot L, Wiszniewski L, Rochat T, Suter S, Lacroix JS, Chanson M: Src signaling links mediators of inflammation to Cx43 gap junction channels in primary and transformed CFTR-expressing airway epithelial cells. Cell Commun Adhes 2003;10:279–285.
72.
Dudez T, Borot F, Huang S, Kwak BR, Baccheta M, Ollero M, Stanton BA, Chanson M: CFTR in a lipid raft-TNFR1 complex modulates gap junctional intercellular communication and IL-8 secretion. Biochim Biophys Acta 2008;1783:779–788.
73.
Park SJ, Lee KS, Kim SR, Min KH, Lee KY, Choe YH, Park SY, Hong SH, Lee YC: Change of connexin 37 in allergen-induced airway inflammation. Exp Mol Med 2007;39:629–640.
74.
MacCallum NS, Evans TW: Epidemiology of acute lung injury. Curr Opin Crit Care 2005;11:43–49.
75.
Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med 2000;342:1334–1349.
76.
Xing X, Minamiya Y, Fu C, Bhattachaya J: Ca2+ waves in lung capillary endothelium. Circ Res 1996;79:898–908.
77.
Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J: Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 2006;116:2193–2220.
78.
Sarieddine MZ, Scheckenbach KL, Foglia B, Maass K, Garcia I, Kwak BR, Chanson M: Connexin43 modulates neutrophil recruitment to the lung. J Cell Mol Med 2009;13:4560–4570.
79.
Moreno AP, Chanson M, Anumonwo J, Scerri I, Seven HG, Taffet M, Delmar M: Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ Res 2002;90:450–457.
80.
Maass K, Chase SE, Lin X, Delmar M: Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc Res 2009;84:361–367.
81.
Schalper KA, Orellana JA, Berthoud VM, Sáez JC: Dysfunctions of the diffusional membrane pathways mediated by hemichannels in inherited and acquired human diseases. Curr Vasc Pharmacol 2009;7:486–505.
82.
Rignault S, Haefliger JA, Waeber B, Liaudet L, Feihl F: Acute inflammation decreases the expression of connexin 40 in mouse lung. Shock 2007;28:78–85.
83.
Zhang J, Wang W, Sun J, Li Q, Liu J, Zhu H, Chen T, Wang H, Yu S, Sun G, Chen W, Yi D: Gap junction channel modulates pulmonary vascular permeability through calcium in acute lung injury: an experimental study. Respiration 2010;80:236–245.
84.
Eltzschig HK, Macmanus CF, Colgan SP: Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 2008;18:103–107.
85.
Thomson LF, Eltzschig HK, Ibla JC, Van de Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP: Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 2004;200:1395–1405.
86.
Völmer JB, Thomson LF, Blackburn MR: Ecto-5′-nucleotidase (CD73)-mediated adenosine production is tissue protective in a model of bleomycin-induced lung injury. J Immunol 2006;6:4449–4458.
87.
Eckle T, Füllbier L, Wehrmann M, Khoury K, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK: Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 2007;178:8127–8137.
88.
Fernandez-Cobo M, Gingalewski C, Maio AD: Expression of the connexin43 gene is increased in the kidneys and the lungs of rats injected with bacterial lipopolysaccharide. Shock 1998;10:97–102.
89.
Di Stasi MR, Ley K: Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol 2009;30:547–56.
90.
Eltzschig HK, Eckle T, Mager A, Küper N, Karcher C, Weissmüller T, Boengler K, Schulz R, Robson SC, Colgan SP: ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 2006;99:1100–1108.
91.
Williams LR, Leggett RW: Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 1989;10:187–217.
92.
Hossmann KA: Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006;26:1057–1083.
93.
Iadecola C: Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5:347–360.
94.
Feuerstein GZ, Liu T, Barone FC: Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 1994;6:341–360.
95.
Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, Tarkowski A: Intrathecal release of pro-and anti-inflammatory cytokines during stroke. Clin Exp Immunol 1997;110:492–499.
96.
Ballabh P, Braun A, Nedergaard M: The blood-brain barrier: an overview. Structure, regulation, and clinical implications. Neurobiol Dis 2004;16:1–13.
97.
Faraci FM, Heistad HH: Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 1990;66:8–17.
98.
Kuo I, Chan-Ling T, Wojcikiewicz R, Hill C: Limited intravascular coupling in the rodent brainstem and retina supports a role for glia in regional blood flow. J Comp Neurol 2008;511:773–787.
99.
Segal SS: Regulation of blood flow in the microcirculation. Microcirculation 2005;12:33–45.
100.
Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N: Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 2006;208:123–132.
101.
Theis M, Söhl G, Eiberger J, Willecke K: Emerging complexities in identity and function of glial connexins. Trends Neurosci 2005;28:188–195.
102.
Grieb P, Foster RE, Strome D, Goodwin CW, Pape PC: O2 exchange between blood and brain tissues studied with 18O2 indicator-dilution technique. J Appl Physiol 1985;58:1929–1941.
103.
Qutub AA, Hunt CA: Glucose transport to the brain: a systems model. Brain Res Brain Res Rev 2005;49:595–617.
104.
Hawkins RA, O’Kane RL, Simpson IA, Vina JR: Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 2006;136:218S-228S.
105.
Bernacki J, Dobrowolska A, Nierwinska K, Malecki A: Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep 2008;60:600–622.
106.
Iadecola C, Nedergaard M: Glial regulation of the cerebral microvasculature. Nat Neurosci 2007;10:1369–1376.
107.
Blomstand F, Giaume C: Kinetics of endothelin-induced inhibition and glucose permeability of astrocyte gap junctions. J Neurosci Res 2006;83:996–1003.
108.
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C: Astroglial metabolic networks sustain hippocampal transmission. Science 2008;322:1551–1555.
109.
Herrero-Gonzalez S, Valle-Casuso JC, Sanchez-Alvarez T, Giaume C, Medina JM, Tabanero A: Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia 2009;57:222–233.
110.
Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003;6:43–50.
111.
Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T, Nedergaard M: Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 2006;9:816–823.
112.
Winship IR, Plaa N, Murphy TH: Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 2007;27:6268–6272.
113.
Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M: Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006;9:260–267.
114.
Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA: Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008;456:745–749.
115.
Kim JV, Dustin ML: Innate response to focal necrotic injury inside the blood-brain barrier. J Immunol 2006;177:5269–5277.
116.
Galea I, Bechmann I, Perry VH: What is immune privilege (not)? Trends Immunol 2007;28:12–18.
117.
Tambuyzer BR, Ponsaerts P, Nouvwen EJ: Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 2009;85:352–370.
118.
Eugenín EA, Eckardt D, Theis M, Willecke K, Bennett MV, Sáez JC: Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc Natl Acad Sci USA 2001;98:4190–4195.
119.
Faustmann PM, Haase CG, Romberg S, Hinkerohe D, Szlachta D, Smikalla D, Krause D, Dermietzel R: Microglia activation influences dye coupling and Cx43 expression of the astrocytic network. Glia 2003;4282:101–108.
120.
Hikerohe D, Smikalla D, Haghikia A, Heupel K, Haase CG, Dermietzel R, Faustmann PM: Effects of cytokines on microglial phenotypes and astroglial coupling in an inflammatory co-culture model. Glia 2005;52:85–97.
121.
Astrup J, Siesjö BK, Symon L: Thresholds in cerebral ischemia. Stroke 1981;12:723–725.
122.
Westbrook GL: Glutamate receptors and excitotoxicity. Res Publ Assoc Res Nerv Ment Dis 1993;71:35–50.
123.
Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A: Glia: the fulcrum of brain diseases. Cell Death Differ 2007;14:1324–1335.
124.
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006;281:21362–21368.
125.
Danbolt NC: Glutamate uptake. Prog Neurobiol 2001;65:1–105.
126.
Nakase T, Söhl G, Theis M, Willecke K, Naus CC: Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol 2004;164:2067–2075.
127.
Li X, Zhou T, Zhi X, Zhao F, Yin L, Zhou P: Effect of hypoxia/reoxygenation on CD73 (ecto-5′-nucleotidase) in mouse microvessel endothelial cell lines. Microvasc Res 2006;72:48–53.
128.
Zimmermann H: Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 1996;49:589–618.
129.
Lewis BM, Pexa A, Francis K, Verma V, McNicol AM, Scanlon M, Deussen A, Evans WH, Rees DA, Ham J: Adenosine stimulates connexin 43 expression and gap junctional communication in pituitary folliculostellate cells. FASEB J 2006;20:2585–2587.
130.
Allen NJ, Karadottir R, Attwell D: Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch 2004;449:132–142.
131.
Contreras JE, Sanchez HA, Veliz LP, Bukauskas FF, Bennett MV, Sáez JC: Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 2004;47:290–303.
132.
Budd SL, Lipton SA: Calcium tsunamis: do astrocytes transmit cell death messages via gap junctions during ischemia. Nat Neurosci 1998;1:431–432.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.