Introduction: Haemodialysis (HD) allow depuration of uraemic toxins by diffusion, convection, and adsorption. Online haemodiafiltration (HDF) treatments add high convection to enhance removal. There are no prior studies on the relationship between convection and adsorption in HD membranes. The possible benefits conferred by intrinsic adsorption on protein-bound uraemic toxins (PBUTs) removal are unknown. Methods: Twenty-two patients underwent their second 3-days per week HD sessions with randomly selected haemodialysers (polysulfone, polymethylmethacrylate, cellulose triacetate, and polyamide copolymer) in high-flux HD and HDF. Blood samples were taken at the beginning and at the end of the treatment to assess the reduction ratio (RR) in a wide range of molecular weight uraemic toxins. A mid-range removal score (GRS) was also calculated. An elution protocol was implemented to quantify the amount of adsorbed mass (Mads) for each molecule in every dialyser. Results: All synthetic membranes achieved higher RR for all toxins when used in HDF, specially the polysulfone haemodialyser, resulting in a GRS = 0.66 ± 0.06 (p < 0.001 vs. cellulose triacetate and polyamide membranes). Adsorption was slightly enhanced by convection for all membranes. The polymethylmethacrylate membrane showed expected substantial adsorption of β2-microglobulin (MadsHDF = 3.5 ± 2.1 mg vs. MadsHD = 2.1 ± 0.9 mg, p = 0.511), whereas total protein adsorption was pronounced in the cellulose triacetate membrane (MadsHDF = 427.2 ± 207.9 mg vs. MadsHD = 274.7 ± 138.3 mg, p = 0.586) without enhanced PBUT removal. Discussion/Conclusion: Convection improves removal and slightly increases adsorption. Adsorbed proteins do not lead to enhanced PBUTs depuration and limit membrane efficiency due to fouling. Selection of the correct membrane for convective therapies is mandatory to optimize removal efficiency.

1.
Duranton
F
,
Cohen
G
,
De Smet
R
,
Rodriguez
M
,
Jankowski
J
,
Vanholder
R
, et al
.
Normal and pathologic concentrations of uremic toxins
.
J Am Soc Nephrol
.
2012
;
23
(
7
):
1258
70
.
2.
Vanholder
R
,
De Smet
R
,
Glorieux
G
,
Argilés
A
,
Baurmeister
U
,
Brunet
P
, et al
.
Review on uremic toxins: classification, concentration, and interindividual variability
.
Kidney Int
.
2003
;
63
(
5
):
1934
43
.
3.
Tattersall
JE
,
Ward
RA
.
Online haemodiafiltration: definition, dose quantification and safety revisited
.
Nephrol Dial Transplant
.
2013
;
28
(
3
):
542
50
.
4.
Maduell
F
,
Moreso
F
,
Pons
M
,
Ramos
R
,
Mora-Macià
J
,
Carreras
J
, et al
.
High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients
.
J Am Soc Nephrol
.
2013
;
24
(
3
):
487
97
.
5.
Canaud
B
,
Vienken
J
,
Ash
S
,
Ward
RA
.
Hemodiafiltration to address unmet medical needs ESKD patients
.
Clin J Am Soc Nephrol
.
2018
.
6.
Ronco
C
,
Clark
WR
.
Haemodialysis membranes
.
Nat Rev Nephrol
.
2018
;
14
(
6
):
394
410
.
7.
Henderson
LW
.
Biophysics of ultrafiltration and hemofiltration
.
Replacement Renal Funct Dial
.
1989
;
300
26
.
8.
Clark
WR
,
Gao
D
.
Low-molecular weight proteins in end-stage renal disease : potential toxicity and dialytic removal mechanisms
;
2002
.
Vol. 41–7
.
9.
Baumgartner-Parzer
SM
,
Seyfert
UT
,
Mannhalter
C
.
Possible clinical effects of the interaction of hemodialysis membranes with adhesion proteins
.
Kidney Int
.
1995
;
47
(
4
):
1115
20
.
10.
Sun
S
,
Yue
Y
,
Huang
X
,
Meng
D
.
Protein adsorption on blood-contact membranes
.
J Membr Sci
.
2003
;
222
(
1–2
):
3
18
.
11.
Grandi
F
,
Bolasco
P
,
Palladino
G
,
Sereni
L
,
Caiazzo
M
,
Atti
M
, et al
.
Adsorption in extracorporeal blood purification: how to enhance solutes removal beyond diffusion and convection
.
Hemodialysis InTech
.
2013
;
381
408
.
12.
Naseeb
U
,
Zarina
S
,
Jägerbrink
T
,
Shafqat
J
,
Jörnvall
H
,
Axelsson
J
.
Differential hemoglobin a sequestration between hemodialysis modalities
.
Biomol Concepts
.
2017
;
8
(
2
):
125
9
.
13.
Fujimori
A
,
Naito
H
,
Miyazaki
T
.
Adsorption of complement, cytokines, and proteins by different dialysis membrane materials: evaluation by confocal laser scanning fluorescence microscopy
.
Artif Organs
.
1998
;
22
(
12
):
1014
7
.
14.
Mares
J
,
Thongboonkerd
V
,
Tuma
Z
,
Moravec
J
,
Matejovic
M
.
Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis
.
Kidney Int
.
2009
;
76
(
4
):
404
13
.
15.
Aoyagi
S
,
Hayama
M
,
Hasegawa
U
,
Sakai
K
,
Tozu
M
,
Hoshi
T
, et al
.
Estimation of protein adsorption on dialysis membrane by means of TOF-SIMS imaging
.
J Membr Sci
.
2004
;
236
(
1–2
):
91
9
.
16.
Aoyagi
S
,
Abe
K
,
Yamagishi
T
,
Iwai
H
,
Yamaguchi
S
,
Sunohara
T
.
Evaluation of blood adsorption onto dialysis membranes by time-of-flight secondary ion mass spectrometry and near-field infrared microscopy
.
Anal Bioanal Chem
.
2017
;
409
(
27
):
6387
96
.
17.
Bergström
J
,
Wehle
B
.
No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis
.
Lancet
.
1987
;
1
(
8533
):
628
9
.
18.
Gomez
M
,
Bañon-Maneus
E
,
Arias-Guillén
M
,
Maduell
F
.
Assessment of removal and adsorption enhancement of high-flux hemodialyzers in convective therapies by a novel in vitro uremic matrix
.
Sci Rep
.
2020
;
10
(
1
):
1
9
.
19.
Penne
EL
,
Van Berkel
T
,
Van der Weerd
NC
,
Grooteman
MP
,
Blankestijn
PJ
.
Optimizing haemodiafiltration: tools, strategy and remaining questions
.
Nephrol Dial Transplant
.
2009
;
24
(
12
):
3579
81
.
20.
Potier
J
,
Queffeulou
G
,
Bouet
J
.
Are all dialyzers compatible with the convective volumes suggested for postdilution online hemodiafiltration
.
Int J Artif Organs
.
2016
;
39
(
9
):
460
70
.
21.
Santos García
A
,
Macías Carmona
N
,
Vega Martínez
A
,
Abad Estébanez
S
,
Linares Grávalos
T
,
Aragoncillo Sauco
I
, et al
.
Removal capacity of different high-flux dialyzers during postdilution online hemodiafiltration
.
Hemodial Int
.
2019
;
23
(
1
):
50
7
.
22.
Gryp
T
,
Vanholder
R
,
Vaneechoutte
M
,
Glorieux
G
.
p-cresyl sulfate
.
Toxins
.
2017
;
9
(
2
).http://dx.doi.org/10.3390/toxins9020052.
23.
Leong
SC
,
Sirich
TL
.
Indoxyl sulfate-review of toxicity and therapeutic strategies
.
Toxins
.
2016
;
8
(
12
):
358
.
24.
Krieter
DH
,
Hackl
A
,
Rodriguez
A
,
Chenine
L
,
Moragues
HL
,
Lemke
HD
, et al
.
Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration
.
Nephrol Dial Transplant
.
2010
;
25
(
1
):
212
8
.
25.
Maheshwari
V
,
Thijssen
S
,
Tao
X
,
Fuertinger
DH
,
Kappel
F
,
Kotanko
P
.
In silico comparison of protein-bound uremic toxin removal by hemodialysis, hemodiafiltration, membrane adsorption, and binding competition
.
Sci Rep
.
2019
;
9
(
1
):
909
.
26.
Chelamcharla
M
,
Leypoldt
JK
,
Cheung
AK
.
Dialyzer membranes as determinants of the adequacy of dialysis
.
Semin Nephrol
.
2005
;
25
(
2
):
81
9
.
27.
Kubiak-Ossowska
K
,
Jachimska
B
,
Al Qaraghuli
M
,
Mulheran
PA
.
Protein interactions with negatively charged inorganic surfaces
.
Curr Opin Colloid Interface Sci
.
2019
;
41
:
104
17
.
28.
Mares
J
,
Richtrova
P
,
Hricinova
A
,
Tuma
Z
,
Moravec
J
,
Lysak
D
, et al
.
Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response
.
Proteomics Clin Appl
.
2010
;
4
(
10–11
):
829
38
.
29.
Pieroni
L
,
Levi Mortera
S
,
Greco
V
,
Sirolli
V
,
Ronci
M
,
Felaco
P
, et al
.
Biocompatibility assessment of haemodialysis membrane materials by proteomic investigations
.
Mol Biosyst
.
2015
;
11
(
6
):
1633
43
.
30.
Bonomini
M
,
Pavone
B
,
Sirolli
V
,
Del Buono
F
,
Di Cesare
M
,
Del Boccio
P
, et al
.
Proteomics characterization of protein adsorption onto hemodialysis membranes
.
J Proteome Res
.
2006
;
5
(
10
):
2666
74
.
31.
Urbani
A
,
Lupisella
S
,
Sirolli
V
,
Bucci
S
,
Amoroso
L
,
Pavone
B
, et al
.
Proteomic analysis of protein adsorption capacity of different haemodialysis membranes
.
Mol Biosyst
.
2012
;
8
(
4
):
1029
39
.
32.
Randoux
C
,
Gillery
P
,
Georges
N
,
Lavaud
S
,
Chanard
J
.
Filtration of native and glycated beta2-microglobulin by charged and neutral dialysis membranes
.
Kidney Int
.
2001
;
60
(
4
):
1571
.
33.
Birk
HW
,
Kistner
A
,
Wizemann
V
,
Schütterle
G
.
Protein adsorption by artificial membrane materials under filtration conditions
.
Artif Organs
.
1995
;
19
(
5
):
411
5
.
34.
Campistol
JM
,
Torregrosa
JV
,
Ponz
E
,
Fenollosa
B
.
Beta-2-microglobulin removal by hemodialysis with polymethylmethacrylate membranes
.
Contrib Nephrol
.
1999
;
125
:
76
85
.
35.
Masakane
I
,
Esashi
S
,
Yoshida
A
,
Chida
T
,
Fujieda
H
,
Ueno
Y
, et al
.
A new polymethylmetacrylate membrane improves the membrane adhesion of blood components and clinical efficacy
.
Ren Replace Ther
.
2017
;
3
(
1
):
32
.
36.
Urbani
A
,
Sirolli
V
,
Lupisella
S
,
Levi-Mortera
S
,
Pavone
B
,
Pieroni
L
, et al
.
Proteomic investigations on the effect of different membrane materials on blood protein adsorption during haemodialysis
.
Blood Transfus
.
2012
;
10
(
Suppl 2
):
s101
12
.
37.
Moachon
N
,
Boullange
C
,
Fraud
S
,
Vial
E
,
Thomas
M
,
Quash
G
.
Influence of the charge of low molecular weight proteins on their efficacy of filtration and/or adsorption on dialysis membranes with different intrinsic properties
.
Biomaterials
.
2002
;
23
(
3
):
651
8
.
38.
Valette
P
,
Thomas
M
,
Déjardin
P
.
Adsorption of low molecular weight proteins to hemodialysis membranes: experimental results and simulations
.
Biomaterials
.
1999
;
20
(
17
):
1621
34
.
39.
Yamashita
AC
,
Sakurai
K
.
Dialysis membranes — Physicochemical structures and features
.
Updates in Hemodialysis InTech
.
2015
.http://dx.doi.org/10.5772/59430.
40.
Yamamoto
K
,
Hayama
M
,
Matsuda
M
,
Yakushiji
T
,
Fukuda
M
,
Miyasaka
T
, et al
.
Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model
.
J Membr Sci
.
2007
;
287
(
1
):
88
93
.
41.
Kokubo
K-i
,
Sakai
K
.
Evaluation of dialysis membranes using a tortuous pore model
.
AIChE J
.
1998
;
44
(
12
):
2607
19
.
42.
Masakane
I
,
Kikuchi
K
,
Kawanishi
H
.
Evidence for the clinical advantages of predilution on-line hemodiafiltration
.
Contrib Nephrol
.
2016
;
189
:
17
23
.
43.
Boschetti-de-Fierro
Adriana
,
Voigt
Manuel
,
Storr
Markus
,
Krause
Bernd
.
MCO Membranes: Enhanced Selectivity in High-Flux Class
.
Sci Rep
.
2015
;
5
(
1
).
44.
Tomisawa
N
,
Yamashita
AC
.
Amount of adsorbed albumin loss by dialysis membranes with protein adsorption
.
J Artif Organs
.
2009
;
12
(
3
):
194
9
.
45.
Rockel
A
,
Hertel
J
,
Fiegel
P
,
Abdelhamid
S
,
Panitz
N
,
Walb
D
.
Permeability and secondary membrane formation of a high flux polysulfone hemofilter
.
Kidney Int
.
1986
;
30
(
3
):
429
32
.
46.
Kim
TR
,
Hadidi
M
,
Motevalian
SP
,
Sunohara
T
,
Zydney
AL
.
Effects of plasma proteins on the transport and surface characteristics of polysulfone/polyethersulfone and asymmetric cellulose triacetate high flux dialyzers
.
Artif Organs
.
2018
;
42
(
11
):
1070
7
.
47.
Bonomini
M
,
Pieroni
L
,
Di Liberato
L
,
Sirolli
V
,
Urbani
A
.
Examining hemodialyzer membrane performance using proteomic technologies
.
Ther Clin Risk Manag
.
2018
;
14
:
1
9
.
48.
Maduell
F
,
Ojeda
R
,
Arias-Guillén
M
,
Fontseré
N
,
Vera
M
,
Rodas
L
, et al
.
A new generation of cellulose triacetate suitable for online haemodiafiltration
.
Nefrologia
.
2018 Mar–Apr
;
38
(
2
):
161
8
.
49.
Floege
J
,
Granolleras
C
,
Deschodt
G
,
Heck
M
,
Baudin
G
,
Branger
B
, et al
.
High-flux synthetic versus cellulosic membranes for beta 2-microglobulin removal during hemodialysis, hemodiafiltration and hemofiltration
.
Nephrol Dial Transplant
.
1989
;
4
(
7
):
653
.
You do not currently have access to this content.