Dear Sir,

The kidney undergoes structural and functional alterations throughout the course of diabetes, microalbuminuria being the first manifestation of nephropathy [1]. Albumin excretion depends mainly on glomerular hyperfiltration and changes in charge selectivity and pore size in the glomerular basement membrane (GBM) [2]. Although the structural basis of diabetic nephropathy is unknown, it is related with expansion of the mesangium and thickening of the GBM. This membrane, which represents a selective barrier to glomerular filtration, is formed of a dense network of collagen filaments, polypeptides of different chain structures, and glycosaminoglycans (GAG), heparan sulfate proteoglycan being the major type. The GAG play an important role as a selective filter in the GBM, ensuring that a negative charge is maintained. In diabetes mellitus, the negative charge on the GBM is reduced because of a decrease in heparan sulfate proteoglycan [3]. As a result, albuminuria and pore size are both increased.

The early phase of nephropathy is characterized by an increase in the activity of the enzymes responsible for glycoprotein (N-acetylglucosaminidase) and mucopolysaccharide metabolism (β-glucuronidase). These enzymes break down complex intracellular macromolecules and degrade glycoconjuncti-gates on the endothelial membrane [4], leading to structural alterations in the GBM, and the abnormal excretion of GAG [5].

We investigated the urinary excretion of GAG in 129 patients in different stages of nephropathy caused by insulin-dependent diabetes: 63 patients without hypertension or microalbuminuria (group B), 37 patients without hypertension but with microalbuminuria (group C), and 29 patients with both (group D). As a control group we studied 52 healthy control subjects (group A).
Glycosaminoglycan excretion was quantified in a sample of urine collected between 9.00 and 18.00 h. We excluded all samples from patients with urinary tract infection, or receiving treatment with nonsteroidal anti-inflammatory agents or heparin. The colorimetric method of Pennock [6] was used, and the results were expressed as U/g creatinine. Normality of the results was checked with the Kolgomorov-Smirnoff test. The differences between mean values for the different groups were tested with Student’s t test. Alternatively, we used one-way analysis of variance and the Kruskall-Wallis nonparametric test for variables whose distribution was not normal. The differences were considered significant when \(p < 0.05 \).

Urinary excretion of GAG differed in diabetic patients with different degrees of nephropathy (table 1); this biochemical parameter may thus be a useful indicator of the stage of progression of insulin-dependent diabetes.

Glycosaminoglycan excretion was significantly lower in healthy controls than in patients with no clinical or biochemical signs of kidney disease (group B, \(p < 0.001 \)), and versus patients with microalbuminuria (group C, \(p < 0.05 \)). We suspect that in the initial stages of kidney disease, alterations in the GAG of the GBM leads to a selective charge; this change may nonetheless go unnoticed because the pores of the membrane are too small to filter albumin. Evidence in support of this hypothesis has been found in rats [7]. The decreased synthesis of GAG in general, and heparan sulfate in particular [8], results in increased urinary excretion of these proteins [9].

In patients with advanced nephropathy (group D), GAG excretion was increased as a result of changes in the GBM and mesangium [10]. Incipient nephropathy should be suspected in patients with insulin-dependent diabetes mellitus in whom the urinary excretion of GAG is elevated, in the absence of microalbuminuria.

Acknowledgement

We thank Karen Shashok for translating the original manuscript into English.

References

GAG Excretion in Diabetic Nephropathy
Nephron 1996;73:344-345