Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Chemotherapy 2009;55:363–371

Effects of Grepafloxacin on the Function of Human Polymorphonuclear Leukocytes and the Phosphorylation of p38 Mitogen-Activated Protein Kinase

Koshio O. · Ono Y.

Author affiliations

Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan

Corresponding Author

Osamu Koshio

Department of Microbiology and Immunology, Teikyo University School of Medicine

2-11-1 Kaga, Itabashi, Tokyo 173-8605 (Japan)

Tel. +81 3 3964 1211, ext. 2199, Fax +81 3 5375 5284

E-Mail koshio@med.teikyo-u.ac.jp

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Background: Some new quinolones (NQs) modulate polymorphonuclear leukocyte (PMN) functions. We investigated these effects on PMN functions at concentrations <10 μg/ml. Methods: Chemotactic activity and the production of reactive oxygen species (ROS) were measured using a 48-well chemotaxis chamber and by luminol-dependent chemiluminescence (CL) activity, respectively. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was measured by Western blot using specific antibodies to its phosphorylation sites. Results: Grepafloxacin (GPFX) at concentrations >5 μg/ml increased the chemotactic activity and ROS production of PMNs after stimulation with N-formylmethionyl-leucyl-phenylalanine (fMLP), whereas prulifloxacin (PUFX) showed no effect. In contrast to PUFX, GPFX at concentrations >1 μg/ml stimulated the phosphorylation of p38 MAPK. Conclusions: GPFX enhanced the chemotactic activity and ROS production of PMNs after stimulation with fMLP at concentrations <10 μg/ml. These effects of GPFX on PMNs could be in part due to the enhancement of p38 MAPK phosphorylation.

© 2009 S. Karger AG, Basel


  1. Hirota M, Totsu T, Adachi F, Kamikawa K, Watanabe J, Kanegasaki S, Nakata K: Comparison of antimycobacterial activity of grepafloxacin against Mycobacterium avium with that of levofloxacin: accumulation of grepafloxacin in human macrophages. J Infect Chemother 2001;7:16–21.
  2. Imada T, Miyazaki S, Nishida M, Yamaguchi K, Goto S: In vitro and in vivo antimicrobial activities of a new quinolone, OPC-17116. Antimicrob Agents Chemother 1992;36:573–579.
  3. Imada T, Goto S, Miyazaki S, Yamaguchi K, Kuwahara S: In vitro and in vivo antimicrobial effects of a new quinolone antimicrobial drug. Jpn J Chemother 1995;43:29–41.
  4. Bailly S, Fay M, Ferrua B, Gougerot-Pocidalo MA: Ciprofloxacin treatment in vivo increases the ex vivo capacity of lipopolysaccharide-stimulated human monocytes to produce IL-1, IL-6 and tumor necrosis factor-α. Clin Exp Immunol 1991;85:331–334.
  5. Bailly S, Fay M, Roche Y, Gougerot-Pocidalo MA: Effects of quinolones on tumor necrosis factor production by human monocytes. Int J Immunopharmacol 1990;12:31–36.
  6. Bailly S, Mahe Y, Ferrua B, Fay M, Tursz T, Wakasugi H, Gougerot-Pocidalo MA: Quinolone-induced differential modulation of IL-1α and IL-1β production by LPS-stimulated human monocytes. Cell Immunol 1990;128:277–288.
  7. Roche Y, Fay M, Gougerot-Pocidalo MA: Effects of quinolones on interleukin 1 production in vitro by human monocytes. Immunopharmacology 1987;13:99–109.
  8. Roche Y, Gougerot-Pocidalo MA, Fay M, Etienne D, Forest N, Pocidalo JJ: Comparative effects of quinolones on human mononuclear leukocyte functions. J Antimicrob Chemother 1987;19:781–790.
  9. Hara T, Takemura H, Kanemitsu K, Yamamoto H, Shimada J: Comparative uptake of grepafloxacin and ciprofloxacin by a human monocytic cell line, THP-1. J Infect Chemother 2000;6:162–167.
  10. Khan AA, Slifer TR, Araujo FG, Suzuki Y, Remington JS: Protection against lipopolysaccharide-induced death by fluoroquinolones. Antimicrob Agents Chemother 2000;44:3169–3173.
  11. Khan AA, Slifer TR, Remington JS: Effect of trovafloxacin on production of cytokines by human monocytes. Antimicrob Agents Chemother 1998;42:1713–1717.
  12. Hotta K, Niwa M, Hirota M, Kanamori Y, Matsuno H, Kozawa O, Otsuka T, Matsui N, Uematsu T: Regulation of fluoroquinolone uptake by human neutrophils: involvement of mitogen-activated protein kinase. J Antimicrob Chemother 2002;49:953–959.
  13. Tullio V, Cuffini AM, Bonino A, Ianni Palarchio A, Roana J, Mandras N, Rossi V, Carlone NA: Influence of a new fluoroquinolone, AF3013 (the active metabolite of prulifloxacin), on macrophage functions against Klebsiella pneuminiae: an in vitro comparison with pefloxacin. J Antimicrob Chemother 2000;46:241–247.
  14. Yagi Y, Aoki M, Iguchi M, Shibasaki S, Kurosawa T, Kato Y, Tsuji A: Transporter-mediated hepatic uptake of ulifloxacin, an active metabolite of a prodrug-type new quinolone antibiotic prulifloxacin, in rats. Drug Metab Pharmacokinet 2007;22:350–357.
  15. Matera MG: Review: Pharmacologic characteristics of prulifloxacin. Pulm Pharmacol Ther 2006;19:20–29.
  16. Yamamori T, Inanami O, Nagahata H, Cui Y-D, Kuwabara M: Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes. FEBS Lett 2000;467:253–258.
  17. Niwa M, Hotta K, Kanamori Y, Kumada M, Hirota M, Kozawa O, Fujimoto S: p38 MAPK associated with stereoselective priming by grepafloxacin on O2 production in neutrophils. Free Radic Biol Med 2004;36:1259–1269.
  18. Brown GE, Stewart MQ, Bissonnette SA, Elia AEH, Wilker E, Yaffe MB: Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 2004;279:27059–27068.
  19. Ashida N, Arai H, Yamasaki M, Kita T: Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis. J Biol Chem 2001;276:16555–16560.
  20. Niwa M, Kanamori Y, Hotta K, Matsuno H, Kozawa O, Fujimoto S, Uematsu T: Priming by grepafloxacin on respiratory burst of human neutrophils: its possible mechanism. J Antimicrob Chemother 2002;50:469–478.
  21. Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, Tamai I: Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm 2007;4:85–94.
  22. Dang PM, Fontayne A, Hakim J, El Benna J, Périanin A: Protein kinase Cζ phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol 2001;166:1206–1213.
  23. Bey EA, Xu B, Bhattacharjee A, Oldfield CM, Zhao X, Li Q, Subbulakshmi V, Feldman GM, Wientjes FB, Cathcart MK: Protein kinase Cδ is required for p47phox phosphorylation and translocation in activated human monocytes. J Immunol 2004;173:5730–5738.
  24. Yamamori T, Inanami O, Nagahata H, Kuwabara M: Phosphoinositide 3-kinase regulates the phosphorylation of NADPH oxidase component p47phox by controlling cPKC/PKCδ but not Akt. Biochem Biophys Res Commun 2004;316:720–730.
  25. Chen Q, Powell DW, Rane MJ, Singh S, Butt W, Klein JB, McLeish KR: Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol 2003;170:5302–5308.
  26. Hoyal CR, Gutierrez A, Young BM, Catz SD, Lin JH, Tsichlis PN, Babior BM: Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc Natl Acad Sci USA 2003;100:5130–5135.
  27. Yan SR, Al-Hertani W, Byers D, Bortolussi R: Lipopolysaccharide-binding protein- and CD14-dependent activation of mitogen-activated protein kinase p38 by lipopolysaccharide in human neutrophils is associated with priming of respiratory burst. Infect Immun 2002;70:4068–4074.
  28. Lal AS, Clifton AD, Rouse J, Segal AW, Cohen P: Activation of the neutrophil NADPH oxidase is inhibited by SB 203580, a specific inhibitor of SAPK2/p38. Biochem Biophys Res Commun 1999;259:465–470.
  29. Cook PJ, Andrews JM, Wise R, Honeybourne D, Moudgil H: Concentrations of OPC-17116, a new fluoroquinolone antibacterial, in serum and lung compartments. J Antimicrob Chemother 1995;35:317–326.
  30. Sasabe H, Kato Y, Suzuki T, Itose M, Miyamoto G, Sugiyama Y: Carrier-mediated uptake of grepafloxacin, a fluoroquinolone antibiotic, by the isolated rat lung cells. Drug Metab Pharmacokinet 2005;20:491–495.
  31. Ito T, Yano I, Masuda S, Hashimoto Y, Inui K: Distribution characteristics of levofloxacin and grepafloxacin in rat kidney. Pharmacol Res 1999;16:534–539.
  32. Deguchi Y, Sun J, Tauchi Y, Sakai S, Morimoto K: Distribution characteristics of grepafloxacin, a fluoroquinolone antibiotic, in lung epithelial lining fluid and alveolar macrophage. Drug Metab Pharmacokinet 2003;18:319–326.
  33. Taira K, Koga H, Kohno S: Accumulation of a newly developed fluoroquinolone, OPC-17116, by human polymorphonuclear leukocytes. Antimicrob Agents Chemother 1993;37:1877–1881.
  34. Maeda T, Takahashi K, Ohtsu N, Oguma T, Ohnishi T, Atsumi R, Tamai I: Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm 2007;4:85–94.
  35. Tirona RG, Kim RB: Pharmacogenomics of organic anion-transporting polypeptides (OATP). Adv Drug Deliv Rev 2002;54:1343–1352.
  36. Fàbrega A, Madurga S, Giralt E, Vila J: Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009;2:40–61.
    External Resources
  37. Escribano I, Rodríguez JC, Llorca B, García-Pachon E, Ruiz M, Royo G: Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy 2007;53:397–401.
  38. Horii T, Osaki M, Muramatsu H: Fluoroquinolone resistance in clinical isolates of Klebsiella oxytoca. Chemotherapy 2008;54:323–327.
  39. Lee CC, Lee VWY, Chan FKL, Ling TKW: Levofloxacin-resistant Helicobacter pylori in Hong Kong. Chemotherapy 2008;54:50–53.
  40. Jog NR, Jala VR, Ward RA, Rane MJ, Haribabu B, McLeish KR: Heat shock protein 27 regulates neutrophil chemotaxis and exocytosis through two independent mechanisms. J Immunol 2007;178:2421–2428.
  41. Tamura M, Kai T, Tsunawaki S, Lambeth JD, Kameda K: Direct interaction of actin with p47phox of neutrophil NADPH oxidase. Biochem Biophys Res Commun 2000;276:1186–1190.
  42. Huang C-K, Zhan L, Ai Y, Jongstra J: LSP1 is the major substrate for mitogen-activated protein kinase-activated protein kinase 2 in human neutrophils. J Biol Chem 1997;272:17–19.
  43. Wu Y, Zhan L, Ai Y, Hannigan M, Gaestel M, Huang C-K, Madri JA: MAPKAPK2-mediated LSP1 phosphorylation and FMLP-induced neutrophil polarization. Biochem Biophys Res Comm 2007;358:170–175.
  44. Wu Y, Hannigan MO, Kotlyarov A, Gaestel M, Wu D, Huang C-K: A requirement of MAPKAPK2 in the uropod localization of PTEN during FMLP-induced neutrophil chemotaxis. Biochem Biophys Res Commun 2004;316:666–672.
  45. Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P, Miller BJ, Jirik FR, Kubes P: PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat Immunol 2008;9:743–752.

Article / Publication Details

First-Page Preview
Abstract of Microbiology

Received: December 16, 2008
Accepted: May 25, 2009
Published online: August 05, 2009

Number of Print Pages: 9
Number of Figures: 5
Number of Tables: 0

ISSN: 0009-3157 (Print)
eISSN: 1421-9794 (Online)

For additional information: https://www.karger.com/CHE