Contents

Preface XII

Nuclear Differentiation in the Development of Normal and Neoplastic Tissues 1
John D. Simnett, Newcastle upon Tyne

I. Genetic Mechanisms in Normal Development 3
A. Effects Associated with Permanent Genetic Changes 3
1. Chromosome Elimination 3
2. Nuclear Transplantation Experiments in Amphibia 4
B. Phenomena Dependent on Altered Patterns of Gene Expression 6

II. Genetic Mechanisms in Neoplasia 8
A. Effects Associated with Permanent Genetic Changes 8
1. Hereditary Predisposition toward Cancer 8
IV. Supernumerary Limb Formation 81
V. Stimulation of Regeneration in Higher Vertebrates 90
A. The Histology of Non-Regenerating Limbs 90
B. Methods of Stimulating Limb Regeneration 91
VI. Conclusions 97
References 100

Genome Control and the Genetic Potentialities of the Nuclei of
Dedifferentiated Regeneration Blastema Cells 106
Ann M.C. Burgess, London

I. The Activation and Repression of the Bacterial Genome 107
A. The Lac System of Escherichia coli 107
B. The -Phage System 109
C. The Isolation of the Lac Repressor 110
D. Characteristics of Repressors 111
E. The Binding of Repressors to DNA 112
F. The Complexing of Repressors with Specific Regions of the DNA 112
G. The Mechanism of Repression in Microorganisms 113
II. The Differential Function of Genes 114
A. Metazoan and Bacterial Systems Contrasted 114
B. Activation or Repression 116
C. The Metazoan Nucleus 116
D. The Role of Nucleoproteins in Gene Regulation 116
E. Non-Histone Nucleoproteins 117
F. Occurrence of Nucleohistones 117
G. Nucleohistones and Gene Regulation 118
H. The Mechanism of Repression in the Metazoa 120
III. The Regeneration Blastema as a Dedifferentiating System 120
A. Regeneration in Amphibia 121
B. The Local Origin of Blastema Cells 121
C. The Role of the Epidermis 122
D. The Dedifferentiation of the Stump Tissues 123
IV. The Significance of the Dedifferentiated State 125
A. The Difficulty of Cell Identification 127
B. The Dedifferentiated State 129
V. How Stable is Differentiation? 131
A. Metaplasia in Regenerating Muscle 132
B. Metaplasia in Regenerating Cartilage 132
VI. The Potentialities of Blastema Cells 133
A. The Reversibility of Gene Function 134
B. Xenopus Larvae as a Source of Blastema Cells for Nuclear Transplantation 135
C. The Developmental Potentialities of Dedifferentiated Cells 139
D. The Suspension of Gene Function or a Return to a Pleuripotent State 142
E. Concluding Remarks 145
References 148

The Effect of Chemicals with Gene-Inhibiting Activity on Regeneration 153
Alexander Wolsky, New York, N.Y.
Introduction 153
Substances Interfering with Purine and Pyrimidine Synthesis and Interconversion 157
Antimetabolites Interfering with Replication and Transcription 164
Nucleic Acid Analogs Acting by Incorporation 171
Alkylating Agents 173
Inhibitors of Protein Synthesis 175
Synergism of Gene-Inhibiting Substances 178
Conclusions 182
References 182

Contents VIII

Cell Surfaces in Neoplasia 189
Gerald C. Easty, London

I. Introduction 190
II. Composition of the Plasma Membrane-Surface Complex 190
A. Problems Associated with Isolation 191
B. Chemical Composition 192
III. Structure 196
A. Bimolecular Lipid Layer Model 196
B. Globular Micelle Model 196
IV. Chemical Composition of the Plasma Membrane Complexes of Normal and Malignant Cells 200
A. Lipids 200
B. Carbohydrates 202
C. Sialic Acid and Other Ionogenic Groups 203
V. Antigens 206
A. Tumor Specific Antigens 206
B. Loss of Antigens 209
C. Embryonic Antigens 210
VI. Reduced Cell-Cell Adhesiveness of Malignant Cells 212
A. Structural Basis 212
B. Chemical Basis 213
VII. Contact Regulation of Normal and Malignant Cells 217
A. Contact Inhibition of Movement in vitro 217
B. Functional Junctions between Cells 219
C. Contact Inhibition of Cell Proliferation 220
D. Metabolic Cooperation between Cells in Contact 222
VIII. Cell Contacts and the Formation of Metastases 223
References 227

The Role of the Cell Surface in Embryonic Morphogenesis 234
M.F. Collins, Hartford, Conn.

I. Tissue Movements in Embryonic Morphogenesis 235
A. Some Examples 235
B. Cellular Basis of Morphogenetic Movements 237
II. Sorting Out: A Model for Morphogenesis 238
A. Correspondence to Normal Morphology 238
B. Directed Migration 241
C. Timing 246
D. Selective Adhesion 250
E. Other Mechanisms 256
III. Adhesive Mechanisms 258
A. Intercellular Cement and Specific Molecules 259

Contents IX

B. Ultrastructure 263
C. Lyophobic Colloids 265
D. Bivalent Cation Bridge 268
IV. Cellular Motility in Embryogenesis .268
A. Primordial Germ Cells .268
B. Neural Crest Cells 269
C. Haptotaxis 271
D. Changing Surface Properties .272
References .275

The Differentiation and Organization of Tumors in vitro.279
Nelly Auersperg and Cyril V. Finnegan, Vancouver, B.C.
I. Introduction 279
II. Culture of Normal Tissues 282
III. Culture of Explanted Tumors 286
A. Organ Culture 286
B. Matrix Culture 287
C. Short-Term Cell-Layer Culture 288
D. Long-Term Cell-Layer Culture 290
1. Histotypic Organization in Long-Term Tumor Cultures 291
2. Differentiation in Long-Term Tumor Cell Lines 294
3. Suspension Cultures of Tumor Cell Lines 295
4. Summary 296
IV. Malignant Transformation in vitro 297
A. General Introduction 297
B. Changes in Cellular Morphology and Behavior 299
1. Contact Inhibition of Movement 299
2. Density-Dependent Inhibition of Growth 300
3. Dependence on Substrata and Growth-Factors 302
4. Defferentiation of Transformed Cells 304
5. Cellular Morphology 305
6. Structural Basis for Cellular Changes 307
V. Comments 311
Acknowledgement 313
References 313

Differentiation and Organization in Teratomas 319
J.A. Gaillard, Evreux

Introduction 320
I. Definition and Nosology 321
II. Structure of Teratomas 322

Contents X

A. Analytical Structure 322
1. Immature Differentiation 322
a) The Embryonic Germ Layers 324
b) The Extra-Embryonic Germ Layers 324
c) The Evolution of the Germ Layers 326
2. Embryogenic Differentiation 327
3. Mature Differentiations and Organogenesis 328
B. Synthetic Structure 330
1. The Framework 330
2. The Models 332

III. Kinematics of Teratomas 334
A. Flistogenesis of the Parts 334
B. Histogenesis of the Whole 335
C. Evaluation of the Malignancy 336

IV. Origin of Teratomas 337

V. Experimental Teratomas 339
A. Experimental Teratomas in the Rooster 339
B. Spontaneous Testicular Teratomas in the Mouse 340
C. Attempt of Production by Graft 341
D. Induced Teratomas in Plants 342

VI. The Sex of Teratomas 342

VII. Conclusion 342
A. On the Structure Level 342
B. On the Histogenic Level 343
C. On the Causal Level 344

References 346

The Association of Tumor and Embryonic Cells in vitro 350
M.-F. Sigot-Luizard, Nogent sur Marne

Introduction 351
I. Culture Techniques 351
A. Sponge Matrix Method 351
B. Culture on Agar-Agar Medium 353

II. Growth and Metabolism of Tumor Cells in vitro 354
A. Growth 354
1. Favorable Factors 354
2. Inhibitory Factors 361
B. Metabolism 366
1. Histochemical Studies 366
2. Spectrophotometry 366
3. Autoradiography 367

III. Interactions between Normal and Tumor Cells in vitro 367
A. Intercellular Exchanges 367
B. Invasive Property of the Tumor Cells 368

Contents XI

1. Mechanical Aspect 368
2. Physiological and Biochemical Aspects 372
3. Conclusions 375
There is an increasing awareness, nowadays, of the possibility that epigenetic mechanisms might operate in neoplastic systems. Epigenetic systems share several interesting features with neoplastic systems [1], and the developmental path of tumours is said to correspond closely with that of embryos [2]. There are also important points of difference between the systems, such as for example, in regulation and supercellular organisation which play a prominent part in embryonic development but which are conspicuously absent in neoplastic systems [3]. It has been suggested that neoplastic transformation might be a pathological counterpart of normal
differentiation, and that it might arise by a misprogramming of gene activity by epigenetic mechanisms [4].

This book is therefore devoted to a discussion of some epigenetic processes most relevant to the study of neoplasia. The first seven chapters deal with the problems of nuclear differentiation in normal development and in neoplasia, the molecular basis of the operation of epigenetic mechanisms, and the roles played by cell surfaces in embryogenesis, and in neoplastic development and dissemination.

The considerable emphasis placed here on the problems of regeneration is due to the fact that the question of dedifferentiation is central to the problem of neoplasia. It has been observed that many tumours show a progressive anaplasia. The degree of anaplasia is often used as a criterion for assessing the malignancy of tumours. It also forms the basis of histological grading of neoplasms, which is used as a guide in the treatment and prognosis [5, 6]. But are these anaplastic changes analogous to true dedifferentiation which one encounters in regeneration systems? A critical appraisal of the state of differentiation in tumours might therefore be of value to those investigating neoplastic phenomena as well as to students of embryology.

Hence, the remaining chapters of the book deal with the problems of differentiation and organisation of tumours in vitro, either on their own or in association with embryonic cells. Such experiments have, in fact, provided us with considerable information about the growth characteristics, invasive ability, and the degree of malignancy of tumours. Although not described in detail in this book, tumour and embryonic cell interactions have been used recently to evolve a biological system of grading of tumours which can be used to assess the malignancy of tumours and also as an aid to prognosis [7].

Another aspect of the question of differentiation, which has exciting possibilities, is: If tumours did dedifferentiate, can they be induced to redifferentiate? Can neoplastic growth and differentiation be controlled by epigenetic influences? It was suggested some years ago that the "individuation field", the persistence of which was postulated to be responsible for regeneration, might inhibit growth and promote differentiation of tumours [8, 9]. Although this method of inducing tumour differentiation has not been particularly successful [10-12], other methods such as the combination of tumour tissues with embryonic organisers etc. appear to have achieved some degree of success [13]. These questions have been discussed in some detail. A chapter on teratomas is also included, and this hardly requires justification. Willis [14] believes that teratomas are produced from foci of pluripotent embryonic cells. The wide spectrum of
differentiation seen in teratomas supports such a view. It has even been suggested that their development is comparable to embryonic development itself with respect to their ‘programme of development’.

It is hoped that this book will be helpful to workers engaged in cancer and embryological researches, and will stimulate co-operative efforts between workers in the two fields. For lack of space, it has not been possible to include articles on such topics as embryonic inductions, competence, growth, regulation, morphogenesis etc. It is hoped to produce a second volume dealing with some of these topics if the response of the readership to the present volume is encouraging.

I wish to thank the authors for their valuable contributions, and the publishers, Karger AG, for their cordial co-operation and excellence of production.

References


Preface XIV

7 Sherbet, G.V. and Lakshmi, M.S.; Unpublished work.
13 See pp. 18, 361-362, and 393-395.

February 1973

G. V. Sherbet