Includes bibliographies and index.

1. Intractable pain - Surgery. 2. Intractable pain - Pathophysiology. 3. Central nervous system Surgery.

I. Sweet, William Herbert, 1910- II. Title. Ill. Series.


RD595.5.G83 1989 617'.48-dc 19

DNLM/DLC for Library of Congress 88-37194 CIP

ISBN 3-8055-4885-0

Bibliographic Indices

This publication is listed in bibliographic services, including Current Contents and Index Medicus.

Drug Dosage

The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.

No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 1989 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)

ISBN 3-8055-4885-0

Contents

Preface XV

Introduction, Including Definitions and Generalizations 1

Part I. Surgical Interruption of Nociceptive Pathways 9

Section I. Operations on the Cranial Nerves 10

Chapter I.A. The Trigeminal Nerve 10
Reports of Dissatisfaction 54
Complications 55
Comparison between Radiofrequency Heating and Glycerol 56
Multiple Sclerosis 57
Conclusion 57
Percutaneous Compression of Trigeminal Ganglion and Root 57
Historical Note 57
Conclusion 59
Subcutaneous Injection of the Neurotoxin Stilbamidine 59
Microvascular Decompression 59
Historical Note 59
Mechanisms 60
Technique 64
Results 65
Complications 66
Other Intervention for Tic douloureux 67
Posterior Fossa Rhizotomy 67
Other Indications for Trigeminal Rhizotomy than Tic douloureux 68
Conclusions 68

Chapter 1.B. Periodic or Chronic Migrainous Neuralgia - Cluster Headache 70
Clinical Features 70
Neural Pathways Activated during these Pains 72
Temporary Trigeminal Denervation 72
Retrogasserian Lidocaine Block 72
Radiofrequency Rhizotomy 73
Glycerol Rhizotomy 75
Open Trigeminal Rhizotomy 75
Superficial Petrosal Neurectomy 77
Division of the Nervus intermedium 81
Tractotomy of Bulbar Descending Cephalic Pain Tract 83
Autonomic Activity vis-à-vis Attacks of Pain 85
Summary 86
Conclusions 87

Chapter 2. Cranial Nerves VII, IX, X, XI 88
Historical Note 88
Anatomy 88
N. intermedium (Geniculate) Neuralgia 90
Conclusion 91

Contents VII
Vagoglossopharyngeal Neuralgia 91
Clinical Features 91
Site of Pain 92
Modes of Provocation 92
Onset, Type and Duration of Attacks 92
Special Variability in Clinical Manifestations 93
Differential Diagnosis 96
Medical Treatment 96
Surgical Treatment 96
Open Rhizotomy 96
Percutaneous Rhizotomy 97
Open Exploration; MVD or IX-X Rhizotomy 101
Conclusions 103

Section II. Neurotomies 104

Chapter 3. Percutaneous Medial Branch Neurotomy 105
Conclusions 108

Section III. Spinal Rhizotomies and Ganglionectomies 109

Historical Note 109
Anatomy of Spinal Roots and Nerves 109

Chapter 4. Open Spinal Rhizotomies 112
Intradural Rhizotomies 112
Conclusion 117
Extradural Spinal Root Section 117
Excision of Dorsal Root Ganglion 118
Conclusions Regarding Ganglionectomy 124

Chapter 5. Selective Posterior Rhizotomy 125
Conclusions 129

Chapter 6. Percutaneous Spinal Root Lesion 130
Conclusions 131

Section IV. Lesions in the Spinal Cord 132

Chapter 7. Lesions, Accidental and Surgical, of Dorsal Root Entry Zone 132
Anatomical, Physiological and Physiopathological Data Concerning the Dorsal
Bladder, Bowel and Sexual Dysfunction 169
Hypotension 169
Dysesthesias 170
Postoperative Girdle Pain at the Level of Incision 171
Homer’s Syndrome 171
Referred Pain 171
Causes for Failure 172
Conclusions 172

Chapter 10. Percutaneous Anterolateral Cordotomy 173
Historical Note 173
Surgical Technique 174
Target Localization in the Lateral Approach (at Cl-C2 Level 174
Radiological Localization 174
Impedance Measurement 174
Stimulation 174

Contents IX

Evoked Potentials 177
Lesion Making 178
Results 179
Open versus Closed Anterolateral Cordotomy 179
Conclusions 179

Chapter 11.A. Commissural Myelotomy 180
Historical Note and Surgical Variants in Location and Technique 180
Results 182
Side Effects and Their Implications Related to the Anatomy of ‘Pain Pathways’ 183
Conclusions 185

Chapter 11.B. Stereotactic Cl Central Myelotomy (Central Cord Lesion) 186
Significance of the Sensory Findings 190
Conclusions 193

Chapter 12. Cordectomy 194
Historical Note 194
Clinical Data 194
Results of A. Jefferson 194
Results of Others 195
Conclusions 198
Section V. Lesions in the Brain Stem 199

Chapter 13. Bulbar Trigeminal Tractotomy and Nucleotomy 199
Bulbar Trigeminal Nucleotomy 204
Multiple Lesions of Descending Cephalic Pain Tract and Nucleus Caudalis ‘DREZ’
Lesions 205
Conclusions 206

Chapter 14. Bulbar and Pontine Spinothalamic Tractotomy 207
Conclusions 209

Chapter 15. Stereotactic Mesencephalotomy 210
Historical Note 210
Stereotactic Coordinates and Target Structures 210
Responses Obtained by Stimulation in the Mesencephalon 211
Somatosensory Evoked Potentials Recorded during Mesencephalotomy 216
Unit Activity Recorded during Mesencephalotomy 216
Indications and Results 217
Adverse Effects 217
Conclusions 219

Section VI. Lesions in the Diencephalon 220

Chapter 16. Thalamotomy 220

Contents X

Historical Note 220
Some Introductory Remarks Concerning Diencephalic Mechanisms of Pain
Sensation 220
Ventricudal Thalamotomy 222
Thalamolaminotomy 225
Stimulation Data 227
Evoked Potentials 228
Unit Activity 229
Effect of Lesions 230
Pulvinarotomy 231
Dorsomedian Nucleus Thalamotomy 232
Thalamotomy of Anterior Nuclei 233
Conclusions 234
Chapter 17. Hypothalamotomy 235
Conclusions 237

Section VII. Pituitary Destruction 238

Chapter 18. Pituitary Destruction 238
Historical Note 238
Technique of Chemical Pituitary Destruction 239
Results of Pituitary Destruction 240
Complications of Chemical Pituitary Destruction 240
Mode of Action 241
Conclusions 242

Section VIII. Lesions in the Telencephalon 244

Chapter 19. Frontal Lobe Lesions 244
Historical Note 244
Clinical Data 245
Rationale for Selection of Brain Target 246
Lesion of Supracallosal Gyrus Cinguli or White Matter Cingulum 247
Conclusions 251
Subcaudate Tractotomy, Inferior Fronto-Medial Leukotomy 251
Conclusions 253

Chapter 20. Pre- and Postcentral Gyrectomy 254
Conclusions 256

Section IX. Lesions in the Autonomic Nervous System 257

Chapter 21. Sympathectomy for Pain 257
Introduction 257
Sympathectomy of Limbs 257
Causalgia 257
Clinical Features 258

Contents XI

Psychological Factors 260
Local Procedures 260
Sympathetic Blocks in Diagnosis and Treatment 261
Sympathetic Trunk 261
Intravenous Regional Sympathetic Block 262
Sympathetic Dystrophy (Sudeck’s Atrophy) 262
Clinical Features 262
Psychological Factors 264
Sympathetic Blocks in Diagnosis and Treatment 264
Results of Surgical Sympathectomy 265
Pathogenesis of Causalgia and Sympathetic Dystrophy 265
Vascular Occlusive Disorders 269
Primary and Secondary Raynaud’s Disease 269
Other Structural Occlusive Disease 269
The Upper Limbs 269
The Lower Limbs 270
Post-Amputation Pain 271
Open Sympathectomy of Limbs 271
Extent of Ganglionectiony 271
Pre-Ganglionic versus Post-Ganglionic Denervation 272
Completeness of Denervation 272
Regeneration 273
Complications 274
Simplified Sympathectomies of Limbs 275
Thermal RF Lesions of Upper Thoracic Sympathetic Trunk 275
Upper Thoracic Endoscopic Sympathectomy 276
Percutaneous Lumbar Sympathectomy with Phenol 276
Method 277
Complications 277
Results 277
Cardiac Sympathectomy 278
Sympathectomy of Abdominal Viscera 279
Open Excisions 279
Chemical Sympathectomy of Celiac Plexus and Splanchnic Nerves 280
Conclusions 281

Part II. Electrical Stimulation of Pain-Suppressive Systems 283
Introduction 84

Chapter 22. Peripheral Nerve Stimulation 286
Historical Note 286
Mechanism of Pain Relief by Peripheral Nerve Stimulation 286
Surgical Technique 288
Results 290
Complications 290
Stimulation of the Ganglion of Gasser 290
Conclusions 292
Contents XII

Chapter 23. Spinal Cord Stimulation 293
Historical Note 293
Mechanisms of Pain Relief by Spinal Cord Stimulation 294
Surgical Technique 295
Results 299
Complications 302
Conclusions 302

Chapter 24. Deep Brain Stimulation 303
Historical Note 303
Central Nervous System Mechanisms for Pain Modulation 304
The PVG-PAG Area 304
The VPM-VPL Area 304
Surgical Technique 306
Stimulation Site PVG-PAG 306
Stimulation Site VPM-VPL 310
Results 311
Mechanism of DBS According to Clinical Data 314
The PVG-PAG Target 314
The VPM-VPL Target 315
Complications and Side Effects 317
Conclusions 317

Part III. Intraspinal and Intraventricular Administration of Neuropharmacological Drugs 319

Chapter 25. Intraspinal and Intraventricular Infusion of Opioids 320
Historical Note 320
Route of Injection 321
Target Sites for Opioids in the CSF 321
Choice of Drugs Used 324
Delivery of Opioids into the CSF 325
Bolus Intraspinal Morphine Injection in Cancer Pain 326
Side Effects 329
Respiratory Depression 329
Pruritis 329
Urinary Retention 330
Nausea and Vomiting 330
Tolerance 330
Legend for the Cover Illustration

Munch described the motive of the painting appearing on the cover in the following words: “One evening I was walking along a path - on one side lay the city and below me the fjord. I was tired and ill - I stopped and looked out across the fjord - the sun was setting - the clouds were dyed red like blood. I felt a scream pass through nature; it seemed to me that I could bear the scream. I painted this picture - painted the clouds as real blood. - The colors were screaming. - This became the picture The Scream from the Frieze of Life."

Preface

It is now almost two decades (1969) since White and Sweet wrote their second substantial treatise on pain entitled ‘Pain and the Neurosurgeon’. Since that time, surgical techniques have changed. Previous open operations have been supplemented by the percutaneous introduction of electrodes under very brief general or local anesthesia with the opportunity of verifying by physiological means the nervous structures one aims to destroy. In addition the operating microscope may have disclosed subtle compressive lesions on cranial nerves which may give rise to paroxysmal neuralgias and possibly can be treated by removing the compression. But perhaps more importantly, since that time the evidence that a complex system of pain suppressor mechanisms exists has presented a completely new vista of pain control by activation of these mechanisms. Included are both electrical stimulation at specific sites and introduction of chemicals to bind to either opiate or many nonopiate types of pain suppressor receptors. Clinical utilization of these new concepts is still in its early stages. Neurosurgeons have known since Foerster’s comprehensive studies...
that pain often seems to ‘run in front of the knife’, i.e. the nervous system possesses a remarkable capacity, following destructive procedures on it, to return towards the status quo ante, and to develop little-used or new mechanisms either to cause recurrence of the original pain or to replace it by other types of pain. Although often appearing at a slower pace than the analogous development of tolerance to chemical analgesics, it is clear that both physician and surgeon are confronted by this major problem in pain control.

The new developments include awareness of both pain suppressor and pain inducer pathways, of a bewildering variety of normal chemical mediators at the synapses in these pathways, and the pharmacology of the less readily destroyed analogs of the pain suppressors and antagonists of the pain inducers. This knowledge, though increasing, is still in a state of flux very difficult for the clinician to analyze and apply.

This book is written primarily for neurosurgeons who seek but do not yet have a special expertise in the neurosurgical treatment of pain. Its second intention is to provide all students and therapists of pain with a survey of clinical observations re the effects on chronic pain of destroying, stimulating electrically, and applying drugs to specific parts of the human nervous system. Within the limits of the pages prescribed by the publisher this second objective can be met only incompletely.

For hundreds of hours spent in follow-up studies, collation of data, literature searches and typing of manuscripts, we thank our research assistants, Mrs. Monique Heeren, Deborah Wallace and Linda Berard.

May 1988 Jan Gybels and William Sweet