Tonometer pH$_i$ Monitoring of Free Jejunal Grafts following Pharyngolaryngoesophagectomy for Hypopharyngeal or Cervical Esophageal Cancer

Kinji Kamiyaa Shohachi Suzukia Hiroyuki Minetab Hiroyuki Konnoa

aSecond Department of Surgery and bDepartment of Otolaryngology, Hamamatsu University School of Medicine, Hamamatsu, Japan

Introduction

Patients with hypopharyngeal or cervical esophageal cancer are commonly found at an advanced stage, resulting in poor prognosis. Recently, the effectiveness of chemoradiotherapy for these lesions has been reported [1] and this therapy may become curative treatment in cases of early stage disease [2]. However, the chemoradiotherapy does not always result in satisfactory outcome in the advanced cases and pharyngolaryngoesophagectomy as a salvage surgery is required for cases with residual or recurrent disease [3]. After pharyngolaryngoesophagectomy, reconstruction using a free jejunal graft (FJG) is regarded as the best optimum method. Several authors have reported the outcome of free jejunal transfer [4, 5]. Although the development in microsurgical techniques has been achieved, the most serious problem is failure of the vascular anastomosis, resulting in graft necrosis. This needs reoperation such as reanastomosis of the vessels or resection of the necrotic graft.

Accordingly, monitoring the viability of the graft is very important to detect vascular failure, but a convenient monitoring method has not yet been established. Various methods for monitoring have been reported: monitoring flap [6], the graft temperature, direct observation using endoscopy [7], and percutaneous Doppler ultrasound monitoring [7]. However, there are various problems with the latter methods, such as infection and a lack of objectivity. The intramucosal pH (pH$_i$) reflects
the viability of the viscus, and tonometry is a less invasive method to assess pH$_i$ in the gastrointestinal tract. Tonometric values of pH$_i$ are correlated with pH values directly measured using a microprobe [8]. Also, pH$_i$ is well correlated with intestinal oxygen consumption, therefore it is used as an indicator of intestinal ischemia [9, 10]. Based on these reports, we used a tonometer to monitor FJGs. The present study was performed to evaluate the usefulness of pH$_i$ measurement to assess the viability of FJG.

Materials and Methods

Patients
Thirty-five patients underwent free jejunal transfer after resection of laryngeal, hypopharyngeal, and cervical esophageal cancer and the pH$_i$ of these grafts was measured by tonometry between January 1994 and December 2002. The patients consisted of 31 men and 4 women, ranging in age from 45 to 79 years with an average age of 62.6 years. The locations of the tumors were the hypopharynx in 24 patients, the cervical esophagus in 6, and the larynx in 5. All 35 patients had squamous cell carcinoma. The clinical stage (TNM classification) was I in 3 patients, II in 5, III in 9, and IV in 18. Of the 35 patients, 23 underwent preoperative treatment, which consisted of chemotherapy in 13, radiotherapy in 5, and chemoradiotherapy in 5 patients. 33 patients underwent pharyngolaryngoesophagectomy and esophageal reconstruction using a FJG, while 2 patients underwent transhiatal total esophagectomy with laryngectomy and reconstruction using gastric pull-up with a FJG. Bilateral neck dissection was performed in all 35 patients. In this report, we designed two studies: the early phase study before 1999 (n = 19), in which pH$_i$ of FJGs was measured to determine the critical value of pH$_i$, and the late phase study after 2000 (n = 16), in which anticoagulant treatment was performed in the patients having a pH$_i$ value under the critical value established in the early phase study. There was no significant difference in the clinicopathological characteristics between the early phase group and the late phase group (table 1).

Surgical Technique and Postoperative Medication
Pharyngolaryngoesophagectomy was performed by a team of otolaryngologists for hypopharyngeal and laryngeal cancers, and by a team of surgeons for cervical esophageal cancers. Reconstruction with a FJG was performed by the surgeons’ team, and microvascular anastomosis was done by a plastic surgeon. The superior thyroidal artery or transverse cervical artery was used as the feeding artery, while the external jugular vein or superior thyroidal vein was used as the drainage vein. Urokinase (Mitsubishi Pharma, Osaka, Japan) (24 × 10^4 units/day) and prostaglandin E$_1$ (Ono Pharmaceutical, Osaka, Japan) (80 μg/day) were intravenously administered continuously until the 5th postoperative day in all 35 cases. In the late phase study, heparin sodium (Aventis Pharma, Tokyo, Japan) (200 units/kg/day) was administered to patients whose pH$_i$ value fell to <7.10 in addition to urokinase and prostaglandin E$_1$.
Assessment of pH

Blood circulation of the FJG was assessed by measuring the pH using a tonometer (TRIP Sigmoid Catheter, Tonometrics Division, Instrumentarium Corp., Helsinki, Finland) during and after the operation. The pH was assessed indirectly using a transnasal sampling tube with a silicone balloon which was impermeable to gas. The tonometer was positioned in the middle of the FJG intraoperatively and the tube was fixed on the nose to prevent moving away from the correct position. The pH was measured immediately after completion of anastomosis and at 6- to 12-hour intervals until 5 days after the operation. The regional PCO$_2$ (PrCO$_2$) was calculated from the measured PCO$_2$ multiplied by an equilibration factor, with the factors for periods of 60 min and >90 min being 1.19 and 1.17, respectively. The pH was calculated using the following version of the Henderson-Hasselbalch equation:

$$\text{pH} = 6.1 + \log_{10} \left[\frac{[\text{HCO}_3^-]}{\text{PrCO}_2 \times 0.03} \right]$$

where $[\text{HCO}_3^-]$ is the actual bicarbonate concentration (mmol/l) of the arterial blood sample and k is the equilibration factor (1.19 or 1.17).

Statistical Analysis

The pH data are expressed as the mean ± SD. The significance of differences was determined using the two-sided Student’s t test. The Fisher’s exact test was used to compare postoperative complications. A p value <0.05 was considered significant for all analyses.

Results

Postoperative Complications

In the early phase study, postoperative complications occurred in 10 (53%) of the 19 patients: obstruction of the graft vessels in 3 (16%) (2 of them suffered from graft necrosis), minor digestive anastomotic leakage in 4 (21%), and digestive anastomotic stenosis in 4 (21%) (table 2). The 3 patients with obstruction of the graft vessels did not have any diseases predisposing to vascular occlusion, but all of them had received preoperative treatment, with radiotherapy (32–66 Gy) being performed in all 3 patients and chemotherapy (5-FU and/or CDDP) being done in 2 patients. The causes of vascular obstruction were compression by hematoma, thrombus at the arterial anastomosis and thrombus at the venous anastomosis, respectively. Blood flow of the graft successfully restored with removal of the hematoma in 1 patient, but the other 2 patients required regrafting because of necrosis of the original graft. The course after reoperation was uneventful in all 3 patients. Digestive anastomotic leakage and stenosis were treated conservatively in all cases.

In the late phase study, postoperative complications occurred in 8 (50%) of the 16 patients: graft necrosis in 1 (6%), minor anastomotic leakage in 2 (13%), anastomotic stenosis in 1 (6%) and postoperative bleeding in 2 (13%) (table 2). One of 2 patients with postoperative bleeding received intravenous heparin sodium administration in addition to urokinase and prostaglandin E$_1$, because of a falling pH$_2$ value.

Postoperative Change of pH in the Early Phase Group

The postoperative changes of pH in all patients of the early phase group are shown in figure 1. In the 16 patients without obstruction of the graft vessels, pH$_2$ values were stable and the lowest pH$_2$ was >7.10 throughout the postoperative course. The mean value of pH$_2$ immediately after surgery in these patients was 7.32 ± 0.11. The mean value gradually increased and was stable between 7.32 and 7.41. On the other hand, in the 3 patients with vascular obstruction, the pH$_2$ fell to <7.10. Decline in the pH$_2$ value <7.10 occurred within 30 h after operation in 2 patients with vascular obstruction by thrombus and at 54 h after operation in 1 patient with obstruction by hematoma. The pH$_2$ value of these 3 patients continued to fall to 6.72 ± 0.16 within 24 h after the value decreased to <7.10. Based on the results of pH$_2$ in the early phase study, we determined that the critical value of pH$_2$ was 7.10.

Outcomes of Patients Whose pH$_2$ Values Were <7.10

In the early phase study, all 3 patients whose pH$_2$ value was <7.10 had vascular obstruction of the graft ves-

Table 2. Postoperative complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Early group (n = 19)</th>
<th>Late group (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Obstruction of vessel anastomosis</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Necrosis of FJG</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Anastomosis leakage (minor)</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Anastomosis stenosis</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Bleeding</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Usefulness of pH \textsubscript{i} Measurement to Assess the Viability of FJG

Sels and underwent reoperation (table 3). Postoperative courses were uneventful and the mean hospital stay was 58.7 ± 31.5 days.

Outcomes of Patients in the Late Phase Group

In the late phase group, pH \textsubscript{i} values fell to <7.10 in 4 patients (table 4). Thrombus in the anastomotic artery was found in 1 patient with a pH \textsubscript{i} value of 7.08 just before wound closure. Reanastomosis of the artery was immediately performed and pH \textsubscript{i} values never fell to 7.10, resulting in an uneventful postoperative course. In the remaining 3 patients, the pH \textsubscript{i} values immediately after surgery were 7.08, 7.30 and 7.12, and decreased gradually to 6.65, 7.07 and 7.00 by 6 h after the operation, respectively. Intravenous administration of heparin sodium was added in these patients. Among them, 2 patients recovered gradually without reoperation. In 1 case, the pH \textsubscript{i} value decreased to 6.59 by 12 h after the operation without improving regardless of heparin sodium administration, and regrafting was performed (fig. 2).

Discussion

Several advantages of FJGs have been reported when compared with other reconstructive methods. Schusterman et al. [11] reported that reconstruction with a FJG was associated with fewer complications and a higher

Table 3. Patients with obstruction of pedicle vessels in the early phase group

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Past history</th>
<th>Preoperative treatment</th>
<th>Periods until reoperation, h</th>
<th>pH \textsubscript{i} before</th>
<th>pH \textsubscript{i} after</th>
<th>Cause of vessel obstruction</th>
<th>Reoperation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Radiotherapy (32 Gy)</td>
<td>54</td>
<td>6.94</td>
<td>7.37</td>
<td>Oppression by hematoma</td>
<td>Removal of the hematoma</td>
</tr>
<tr>
<td>2</td>
<td>Esophageal cancer</td>
<td>Radiotherapy (40 Gy) chemotherapy</td>
<td>6</td>
<td>6.82</td>
<td>7.36</td>
<td>Arterial thrombus</td>
<td>Regraft</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>Radiotherapy (66 Gy) chemotherapy</td>
<td>30</td>
<td>6.67</td>
<td>NM</td>
<td>Venous thrombus</td>
<td>Regraft</td>
</tr>
</tbody>
</table>

NM = Not measured; before = before reoperation; after = after reoperation.

Dig Surg 2007;24:214–220

Fig. 1. Postoperative changes of the pH \textsubscript{i} of the FJG in the early phase study (n = 19). The pH \textsubscript{i} value was <7.10 in 3 patients with obstruction of the graft vessels (○). In the 16 patients (●), whose pH \textsubscript{i} values were always >7.10, vascular obstruction was not found.
success rate in comparison with gastric pull-up reconstruction. Low mortality, early intake of food, fewer cardiac or pulmonary complications, and a shorter hospital stay are also advantages of this method [12]. Despite these advantages, however, postoperative complications are not rare. There were 13 operative failures (13.5%) including arterial obstruction, venous anastomotic problems, and carotid blowout and 5 perioperative deaths (6%) among 96 patients in the series of Coleman et al. [12]. In the series of Julieron et al. [13], there were 2 postoperative deaths (2.4%), 4 graft failures (4.8%) and 11 salivary fistulas (13.3%) among 83 patients undergoing pharyngoesophageal reconstruction with a FJG.

In our series, there was no patient death during the perioperative period but complications associated with surgical procedure were not uncommon. Leakage of the pharyngoesphageal anastomosis occurred in 21% and esophagojejunal stenosis was seen in 21% in the early phase group. However, all of these operative complications were cured with conservative treatment. Obstruction of the vascular anastomosis was the most undesirable complication because reoperation to replace a FJG increases the hospital stay and medical expenses. Monitoring of jejunal graft viability is essential to avoid such reoperation. Several monitoring methods for FJGs have been evaluated and reported in reconstruction of the pharynx and cervical esophagus [6, 7]. Among them, the clinical assessment of using the monitoring flap has some disadvantages including the difficulty of evaluating ischemia. Changes of the serosal surface of the monitoring flap induced by infection can make it difficult to correctly evaluate the status of the jejunal graft. Laryngoscopy has also

Table 4. Patients whose pH\textsubscript{i} value fell to <7.10 in the late phase group

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Detection time (h after operation)</th>
<th>pH\textsubscript{i} Cause of vessel obstruction</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before after</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.08 7.40 Arterial thrombus</td>
<td>Reanastomosis Recovered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.07 7.24 Unknown</td>
<td>Heparin sodium Recovered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.00 7.32 Unknown</td>
<td>Heparin sodium Recovered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.65 6.59 Venous thrombus</td>
<td>Heparin sodium Graft necrosis (regraft)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detection time = The time decreased pH\textsubscript{i} fell to <7.10 after operation; before = before treatment; after = after treatment.

Fig. 2. Postoperative changes of the pH\textsubscript{i} in 4 patients whose pH\textsubscript{i} was <7.10 in the late phase study. In 1 patient (●), reanastomosis of the artery was immediately performed just before wound closure. In the 3 patients (○), administration of additional heparin sodium was performed.
been used for monitoring of the jejunal flaps, but this method is obviously invasive and is not accurate enough because the change of mucosal color caused by ischemia needs a long time after vascular obstruction. On the other hand, tonometry is the quantitative and objective evaluation method.

The current results demonstrated that real-time monitoring of pH$_i$ was helpful in detecting vascular damage immediately and in preventing reoperation by administration of heparin sodium in 2 of the 3 patients. In 1983, Fiddian-Green et al. [8] used a tonometer to predict the prognosis of patients with hemorrhagic shock caused by a bleeding gastric ulcer. Since then the tonometer has been applied to patients with acute circulatory failure [14], adult respiratory distress syndrome [15], and multiple organ failure [16]. pH$_i$ has also been used to evaluate ischemia of the sigmoid colon after surgery for abdominal aortic aneurysm [17, 18]. A few investigators have advocated the use of gastrointestinal tonometry to calculate pH$_i$ values for prediction of the postoperative outcome in patients at risk of inadequate splanchnic perfusion [19, 20]. Grum et al. [9] reported that there was a strong correlation between the changes of pH$_i$ and intestinal O$_2$ consumption under conditions where O$_2$ delivery was decreased. Based on these observations, it was determined whether the pH$_i$ measured by tonometry is useful as a monitoring method of tissue perfusion in FJGs after pharyngolaryngoesophagectomy in our series.

From our data in the early phase study, we considered the critical pH$_i$ value induced by vascular complication in a FJG to be 7.10. When the pH$_i$ value was ≥7.10, obstruction of the pedicle vessels was not observed. We performed additional therapy by administering heparin sodium to patients whose pH$_i$ value fell to <7.10 expecting to avoid graft necrosis. The addition of heparin to urokinase and prostaglandin E$_2$ improves the efficacy of thrombolysis and vasodilation by preventing both the formation and the incorporation of new fibrin into the thrombus. Hirigoyen et al. [21] noted thrombus formation in veins after ischemia-reperfusion injury and described the washout by urokinase and general administration of heparin to be effective against thrombus formation in the microcirculation. However, it is possible that heparin increases the risk of bleeding tendency. This suggests that the selection of the cases for the administration of heparin sodium is important. In our late series, early detection of vascular occlusion followed by additional treatment prevented regrafting in 3 of 4 patients with low pH$_i$ values. On the other hand, we failed to prevent reoperation in 1 patient whose pH$_i$ was falling in spite of the administration of heparin sodium. We opted for reoperation when the pH$_i$ value reached 6.59 after 12 h. When pH$_i$ does not recover within several hours by additional treatment, reoperation should be performed. Moreover, obstruction by the thrombus in the early and late phase study occurred in all patients within 30 h after the operation and vessel damage by hematoma occurred 54 h after the operation. These findings suggest that it is important to monitor the values of pH$_i$ by tonometry for 2 days after surgery to detect vascular obstruction by thrombus, and to continue the monitoring by tonometry until 3 days after the operation at least.

In conclusion, pH$_i$ measurement with a tonometer is useful for detecting vessel damage before necrosis appears after reconstruction with a FJG. When the pH$_i$ value falls to <7.10, the jejunal graft is undergoing a severe disturbance induced by vascular obstruction. Additional treatment such as administration of heparin sodium should be given to such patients immediately to avoid reoperation.

