Minireview

DOI: 10.1159/000112556
Published online: December 19, 2007

Atherosclerotic Renal Artery Stenosis: Association with Emerging Vascular Risk Factors

Kosmas I. Paraskevasa George Hamiltonc Jenny M. Crossb Dimitri P. Mikhailidisd

aDepartment of Clinical Biochemistry and Academic Department of Surgery, and bRenal Unit, Royal Free Hospital, and cVascular Surgery, Academic Department of Surgery, and dDepartment of Clinical Biochemistry, Royal Free Hospital and Royal Free University College Medical School, London, UK

Key Words
Atherosclerotic renal artery stenosis · Renal function · Homocysteine · Fibrinogen · C-reactive protein · Lipoprotein(a) · Creatinine

Abstract
Background: The established risk factors for atherosclerotic renal artery stenosis (ARAS) include hypertension, diabetes mellitus, dyslipidemia, obesity, smoking, old age and family history. In the last few years, several emerging risk factors have been proposed as predictors of ARAS, namely homocysteine, fibrinogen, C-reactive protein, lipoprotein(a) and creatinine. Methods: We searched Pubmed/Medline for studies investigating the prognostic value of each of these emerging risk factors in ARAS. Results: Creatinine and C-reactive protein seem to be the most promising predictors of ARAS, whereas the prognostic value of homocysteine, lipoprotein(a) and fibrinogen is not yet fully determined. Conclusion: The establishment of a definite role for these emerging risk factors could result in earlier recognition and/or better management of ARAS with potential regression/slowing down of progression of stenosis. Modifying these markers may also improve the therapeutic approach of the associated systemic atherosclerosis in these high-risk patients. Future trials should focus on the effect of different classes of drugs (e.g. statins and fibrates) on the levels of the emerging risk factors and the association with ARAS progression.

Introduction

The population-based prevalence of atherosclerotic renovascular disease (ARVD), defined as $\geq 60\%$ atherosclerotic renal artery stenosis (ARAS) or occlusion, is approximately 7% in adults >65 years [1]. ARAS is 1 aspect of a multiterritory (systemic) atherosclerotic disease. This concept is supported by the observations that ARAS is identified in approximately 12% of the subjects undergoing coronary angiography [2, 3] and 26% of the subjects investigated for peripheral arterial disease (PAD) [4]. Renal ischemia resulting from ARAS has 2 important sequelae: (1) systemic hypertension (frequently requiring multiple antihypertensive agents) placing the individual at increased risk of stroke and myocardial infarction (MI) [5, 6], and (2) renal atrophy and nephron loss (strong cor-
relation between the degree of ARAS and the risk of renal atrophy, \(p = 0.009 \) [7]. ARAS is therefore a cause of both hypertension and renal insufficiency [8, 9]. The latter is coupled with an increased risk of progression to end-stage renal disease [5, 6]. As a result, ARAS is the underlying disease in 10–40% of the patients entering dialysis programs [10, 11].

A variety of techniques exist with which to anatomically evaluate ARAS. Intra-arterial digital subtraction angiography is the standard diagnostic test for ARAS [12]. However, it is not without risk; these procedures are associated in up to 50% of the cases with a temporary or permanent reduction in glomerular filtration rate that may relate either to contrast nephropathy (both iodine-based and more recently gadolinium-associated) [12] or to cholesterol embolization [13]. Renal artery duplex scanning can be performed with high levels of accuracy and reproducibility in patients with ARAS [14–18]. Additional advantages include being noninvasive and less expensive than intra-arterial digital subtraction angiography. However, it is often impossible to obtain good imaging in obese patients [13]. Other tests also exist (e.g. spiral computed tomography, isotope renography and magnetic resonance angiography) but each has advantages and disadvantages [13].

Identification of risk factors that predispose to ARAS is crucial for the development of strategies for prevention. Hypertension [19–23], diabetes mellitus [19, 20, 22, 24], dyslipidemia [21, 23, 25, 26], obesity [27–30], smoking [21, 31], older age [1, 21, 32, 33] and family history [34–36] comprise established risk factors for ARAS and ARVD. Emerging risk factors include deteriorating renal function (as defined by rising serum creatinine levels), homocysteine, fibrinogen, C-reactive protein (CRP) and lipoprotein(a) [Lp(a)].

This review considers the role of emerging risk factors in ARAS.

Literature Search Method

We searched Medline for studies evaluating the role of emerging risk factors for ARAS. The search terms used were ‘atherosclerosis’, ‘renal artery stenosis’, ‘risk factors’, ‘fibrinogen’, ‘C-reactive protein’, ‘lipoprotein(a)’, ‘homocysteine’ and ‘creatinine’ in various combinations. The reference lists of the selected reports were manually searched for additional studies. These were also considered in our review.

Literature Search Results

Several plasma constituents have been identified as potential risk factors for the development of ARAS. For some, current evidence is not adequate; others have an established role in predicting ARAS.

We discuss the literature data regarding the prognostic role of each of the proposed emerging risk factors.

Fibrinogen

Fibrinogen is an acute phase protein, whose production may be enhanced by the inflammatory process associated with atherosclerosis [37]. Fibrinogen is a major determinant of plasma viscosity and it can influence red cell aggregation, platelet activation and coagulation [37]. Furthermore, atherosclerotic plaques have been shown to contain fibrinogen, fibrin and fibrinogen degradation products, which may play a role in smooth muscle cell proliferation and act as chemotactants for leukocytes [37]. These proatherogenic properties may play a role in the pathogenesis of ARAS.

Plasma fibrinogen levels correlate with the risk of PAD [37–41], coronary heart disease (CHD) [37, 38, 42], MI [38, 42], the extent of aortic atherosclerosis [38, 43], carotid intima media thickness [38, 44], a worse outcome in patients with ischemic stroke [45] as well as an increased risk of recurrent ischemic stroke [46].

The role of fibrinogen in ARAS was investigated in 270 patients (193 men, 77 women; mean age: 59 years) with CHD [47]. By univariate logistic regression analysis, older age (68 ± 8 vs. 58 ± 10 years, for ARAS vs. no ARAS, respectively), the presence of hypertension (61 vs. 38%), a high plasma fibrinogen level (391 ± 93 vs. 335 ± 109 mg/dl), a low albumin level (39 ± 4 vs. 41 ± 4 g/l) and a low hemoglobin level (12.5 ± 1.6 vs. 13.5 ± 1.6 g/dl) were associated with the presence of ARAS (for all associations, \(p < 0.05 \)). On the other hand, serum lipids, Lp(a), creatinine, sex, smoking and diabetes were not associated with ARAS. By multivariate logistic regression analysis, older age [odds ratio (OR) = 2.4, \(p = 0.0001 \)], the presence of hypertension (OR = 2.68, \(p = 0.039 \)) and a higher fibrinogen level (OR = 1.63, \(p = 0.038 \)) were significant risk factors of ARAS [47]. These results suggest that hyperfibrinogenemia, as well as old age and hypertension, are independent risk factors for ARAS.

A recent trial verified the association between elevated fibrinogen levels and the presence of ARAS [2]. After performing renal angiography in 333 hypertensive patients with CHD, significant (>50%) and nonsignificant (<50%) ARAS was identified in 12% (40 patients) and 13.5% (45
patients) of the group, respectively. Patients with >50% ARAS had higher fibrinogen levels compared with non-ARAS patients (402.5 ± 122.7 vs. 354.0 ± 104.8 mg/dl, respectively; p < 0.01) [2]. In univariate analysis, plasma fibrinogen levels were significantly associated with ARAS [estimated OR = 1.036, 95% confidence interval (CI) = 1.008–1.065, p = 0.01] [2].

The strong association between elevated plasma fibrinogen levels and the presence of ARAS was demonstrated in another study [48]. The plasma fibrinogen levels were approximately 25% higher in ARAS patients compared with controls (325.9 ± 70.0 vs. 256.2 ± 54.7 mg/dl, for ARAS and control patients, respectively, p < 0.05) [48]. However, the small number of patients involved (15 patients with ARAS and 27 controls) is an important limitation [48]. In an earlier study, the same group reported that preinterventional plasma fibrinogen levels correlate with restenosis 1–6 months following percutaneous transluminal renal angioplasty (PTRA) performed for ARAS (p < 0.01) [49].

The evidence for the predictive value of fibrinogen in ARAS is therefore still limited. Its role as a prognostic marker for ARAS should be verified in larger scale trials before definite conclusions are drawn.

C-Reactive Protein

High circulating CRP levels are related with future cardiovascular event rates in both stable and unstable angina [50]. CRP is also associated with increased risk of carotid atherosclerosis [51, 52], CHD [53–55], MI [56, 57], stroke [58–60] and PAD [61–63]. In the Rotterdam Study, CRP levels predicted progression of atherosclerosis measured noninvasively at various sites of the arterial tree (carotid, aortic, iliac and lower extremity) [64]. It has been suggested that measuring CRP, in addition to traditional risk factors, may improve the ability to predict cardiovascular events [65]. Besides being a predictor of vascular risk, CRP may be directly involved in atherogenesis [66, 67]. Such actions may include proinflammatory cytokine release, promotion of monocyte chemotaxis and adhesion, vascular smooth muscle cell proliferation and oxidized low-density lipoprotein (LDL) uptake [66, 67]. However, this role for CRP in atherogenesis remains speculative, as is its role in the pathogenesis of ARAS.

CRP levels were measured in 95 hypertensive patients clinically at risk of ARAS, who then underwent intra-arterial digital subtraction angiography [68]. The median serum CRP concentrations were significantly higher among the 57 patients with atherosclerosis of the aorta and/or renal arteries compared with those in the 26 patients without any angiographic lesions (4.6 vs. 1.7 mg/l; p < 0.005). Moreover, in patients with ARAS, the CRP levels were higher when the degree of stenosis exceeded 50%. It was concluded that CRP concentrations correlate with atherosclerotic lesions in the renal arteries and the abdominal aorta, thus supporting the view that ARAS is part of a systemic inflammatory vascular disease [68]. In addition, CRP levels correlate with renal function [69].

CRP levels constitute a late marker of systemic inflammatory response to renal artery stenting [70, 71]. A recent study also demonstrated that ARAS patients with restenosis had higher CRP levels compared with similar patients without restenosis [7.694 ± 0.39 vs. 1.56 ± 1.08 mg/l, for patients with (n = 10) vs. without (n = 20) restenosis, respectively; p = 0.001] [72]. The conclusion reached was that CRP levels might be an independent predictor of recurrent stenosis in ARAS. An independent group verified this association [2]; patients with ARAS had higher high-sensitivity CRP levels compared with controls (7.87 ± 4.81 vs. 5.57 ± 3.86 g/l, respectively; p < 0.05). By univariate analysis, high-sensitivity CRP levels were associated with the presence of ARAS (estimated OR = 1.137, 95% CI = 1.040–1.243; p = 0.005) [2].

These results suggest that CRP is a marker of ARAS and renal function.

Lipoprotein(a)

Lp(a) shares a structural homology with plasminogen and therefore may impair fibrinolysis [73]. There is also some evidence showing that Lp(a) can enhance platelet activation [74]. Lp(a) may also be involved in restenosis following intrainguinal bypass [75]. Other atherogenic actions of Lp(a) have been described and are reviewed elsewhere [73]. The role of Lp(a) in the pathogenesis of ARAS may be confounded by the potential rise in circulating levels of this lipoprotein in the presence of impaired renal function [73].

Serum Lp(a) levels correlate significantly with the risk of MI [76], PAD [77], CHD [78] and stroke [79, 80] as well as the risk of developing intermittent claudication [76]. Its role in ARAS has not been extensively investigated.

Scoble et al. [81] examined the lipoprotein profiles in patients with proven ARAS and compared them with patients matched for age, gender, renal function and the presence of diabetes. Although no significant difference was demonstrated for apolipoprotein B, cholesterol, LDL cholesterol, fibrinogen, high-density lipoprotein cholesterol and triglyceride levels between the groups, the serum Lp(a) levels were higher in the control group (com-
pared with the ARAS group; 58 ± 45 vs. 31 ± 21 mg/dl, respectively; p < 0.01).

A strong positive association was reported in a young man with aggressive arterial occlusive disease in the lower extremities and symptom-free occlusions of coronary and renal arteries in association with high levels of Lp(a) [82]. On the other hand, a study attempting to identify the risk factors for renal artery stenosis in 427 patients (mean age: 59.2 ± 10.3 years) failed to demonstrate a significant correlation between serum Lp(a) levels with ARAS by univariate logistic regression analysis (29.4 vs. 25.3 ± 23.1 mg/dl, for patients with and without ARAS, respectively, p = 0.41) [83].

Therefore, there is no consistent evidence at this stage that Lp(a) is an important independent risk factor for ARAS.

Homocysteine

The hypothesis that homocysteine plays an active role in vascular disease was first proposed almost half a century ago [84]. The basis of this hypothesis was the observation that the pathological findings in an infant with a rare inborn error of B12 metabolism were similar to those in infants with cystathione B-synthase deficiency. This observation led to the conclusion that elevation of blood homocysteine values (the only metabolic abnormality shared in these disorders) was the cause of the vascular disease in these children.

Since then, numerous studies investigated the role of homocysteine as a predictor of vascular diseases. A positive association was demonstrated between plasma homocysteine levels and extent of atherosclerosis [85, 86], as well as the risk of hypertension [87], stroke [85–88], carotid artery disease [89, 90], CHD [87, 91, 92], PAD [93, 94] as well as MI [95, 96].

Homocysteine may exhibit several atherogenic and prothrombotic actions. However, intervention trials have not demonstrated any convincing benefit when the circulating homocysteine levels were lowered [97]. As with Lp(a), the role of homocysteine in the pathogenesis of ARAS may be confounded by the potential rise in circulating levels in the presence of impaired renal function [97].

The plasma homocysteine concentrations were significantly higher in patients with ARAS compared with controls (11.0 ± 3.9 vs. 6.8 ± 1.3 μmol/l, respectively; p < 0.05) [48]. However, the results of this study are underpowered due to the small number of subjects included (15 patients with ARAS and 27 healthy controls). A larger study [99] showed that the plasma homocysteine levels were significantly higher in ARAS (n = 25) patients (median: 15.3 μmol/l, range: 8.4–40.1) when compared with healthy (n = 25) controls (median: 9.9 μmol/l, range: 7.1–20.7, p < 0.001). Nevertheless, following PTRA, the homocysteine levels were only marginally decreased compared with baseline in the 18 of the 25 patients that were eligible at the 6-month follow-up (median: 14.9 μmol/l, range: 9.4–33.8, vs. median: 14.6 μmol/l, range: 7.9–45.8, for baseline and 6 months after revascularization). This finding questions the validity of plasma homocysteine levels as an independent marker of ARAS.

In another trial, homocysteine levels were recorded in 58 patients with angiographically documented ARAS and mildly impaired renal function [100]. A total of 102 normotensive subjects were considered as the control group. The mean total homocysteine levels were significantly higher in patients than in controls (p < 0.01), as was the prevalence of hyperhomocysteinemia (51.7 vs. 32.3%, for patients vs. controls, respectively, p < 0.05). The authors concluded that hyperhomocysteinemia is common in patients with ARAS. The outcome of a recent study strengthens this association [2]; in this study, the plasma homocysteine values significantly correlated with ARAS (14.6 ± 7.0 vs. 11.5 ± 4.2 μmol/l, for patients with vs. without ARAS, respectively; p < 0.05). Additionally, when homocysteine was tested using univariate logistic regression analysis for association with ARAS, a positive association was reported (estimated OR = 1.106, 95% CI = 1.07–1.342; p = 0.001) [2].

Thus, the majority of studies seem to support an association between plasma homocysteine levels and ARAS [2, 48, 100]. However, opposing results were reported in another study [99]. Hypertensive ARAS patients (n = 25) had higher baseline homocysteine levels compared with healthy (n = 25) subjects [15.3 (range: 8.4–40.1) vs. 9.9 (range: 7.1–20.7) μmol/l, for ARAS patients and healthy subjects, respectively; p < 0.001]. Of the ARAS group, 18 patients underwent renal revascularization. In this subgroup, the homocysteine levels were not reduced significantly 6 months following renal revascularization compared with baseline values [14.9 (range: 9.4–33.8) vs. 14.6 (range: 7.9–45.8) μmol/l, respectively; p = not significant]. Thus, the role of homocysteine in ARAS needs to be elucidated.

Creatinine

It is now widely accepted that impaired renal function (as determined by plasma creatinine levels) is associated
with a greater risk of vascular events [101–104]. Thus, renal and ischemic heart disease may progress in parallel [101–104]. This association may reflect an adverse vascular risk profile in patients with even marginally impaired renal function [103, 104].

Elevated creatinine values (a surrogate for reduced glomerular filtration rate) predict a worse outcome (higher morbidity and mortality rates) following MI [105–109]. An elevated creatinine is also associated with an increased risk of ischemic stroke and transient ischemic attack episodes [110, 111], incidence of CHD [112] and all-cause cardiovascular mortality [109, 111, 112]. Furthermore, plasma creatinine values correlate with deteriorating renal function in untreated dyslipidemic patients with CHD [101, 102].

The role of creatinine in predicting significant (≥50% luminal diameter narrowing) ARAS was investigated in a study including 427 patients undergoing cardiac catheterization. By univariate logistic regression analysis, plasma creatinine values ≥1.5 mg/dl (115 μmol/l) were strong predictors of significant ARAS (p = 0.0001) [83]. Overall, 10.5% of the patients undergoing cardiac catheterization had concurrent ARAS. In half of them, the stenosis was significant (≥50% luminal diameter narrowing). The authors proposed the performance of routine abdominal aortography at the time of cardiac catheterization to evaluate the renal vasculature in this potentially high-risk group [83]. These results were verified in a recent study with similar design [113]. Of 1,200 consecutive patients undergoing coronary angiography, significant (≥50%) ARAS was present in almost 1 for every 10 patients (116 patients or 9.7%). By multivariate logistic regression analysis, serum creatinine levels ≥133 μmol/l were a predictor of significant ARAS. The results of these 2 studies [83, 113] suggest that creatinine levels should not only be used as a diagnostic test for the verification of renal impairment and ARVD but also as an important predictor for the presence of ARAS. Additionally, the association between ARAS and CHD suggests that atherosclerosis is a multisystemic disease simultaneously affecting different vascular beds. The hypothesis of a systemic, multiterritory atherosclerotic disease, which would imply a possible association between ARAS and CHD, has also been proposed in other independent studies [2, 114–118].

Another study investigated the risk factors affecting long-term (>5 years) outcome, survival and renal function in 195 patients with ARVD treated invasively or medically [119]. Of the patient group, 54 were randomly assigned to medical treatment (antihypertensive and lipid-lowering drugs) and 136 underwent PTRA. Five patients were lost to follow-up. The average follow-up was 54.4 ± 40.4 months (range: 12–189). A multivariate logistic regression analysis [using age, sex, smoking habit, diabetes, presence of vascular comorbidity, total and LDL cholesterol, baseline creatinine, hypertension, type (monolateral or bilateral) and degree (≥75 or <75%) of stenosis, type of treatment (medical or invasive) and use of statins or angiotensin-converting enzyme inhibitors as variables] showed that, besides the use of angiotensin-converting enzyme inhibitors, the only significant predictor of renal function impairment was an abnormal baseline serum creatinine (≥1.6 mg/dl; 123 μmol/l; hazard ratio = 1.42, 95% CI = 1.03–1.95, p = 0.028). When the same variables were used to calculate the risk for end-stage renal disease, the multivariate analysis produced baseline serum creatinine as the only predictor (hazard ratio = 1.66, 95% CI = 1.22–2.264, p = 0.001). The prognostic role of creatinine was additionally supported by the fact that in the patients who did not proceed to end-stage renal disease, the change in serum creatinine during the study period was very modest [119]. The prognostic role of serum creatinine in progressive ARVD and worsening renal function was also demonstrated in other studies [120–122].

An interesting hypothesis was expressed in a trial investigating individual kidney function in ARAS [123]. In patients with unilateral ARAS, split kidney glomerular filtration rate was demonstrated to be similar in the stenosed compared with the nonstenosed kidney (17.32 vs. 13.6 ml/min, respectively; p = 0.22) [123]. However, a reduction in split kidney glomerular filtration rate with increasing degree of stenosis was noted (<30%, 27 ml/min; 30–60%, 17.7 ml/min; >60% stenosis, 15 ml/min; p = 0.016). It was thus hypothesized that in patients with ARAS the individual kidney function would be equal between the 2 kidneys until the degree of stenosis was sufficient to cause a decrement in renal function [123]. The findings from this study support the role of creatinine as a predictor of ARAS and deteriorating renal function.

Another study [99] showed that creatinine clearance was significantly lower in ARAS (n = 25) patients (median: 60 ml/min, range: 19–133) when compared not only with healthy (n = 25) controls (median: 93 ml/min, range: 62–141, p < 0.001) but also with patients (n = 25) with documented essential hypertension (median: 102 ml/min, range: 50–147, p < 0.001). Furthermore, following PTRA, creatinine clearance improved significantly compared with baseline in the 18 of the 25 patients that were eligible at the 6-month follow-up (median: 52 ml/min,
range: 26–164, vs. median: 63 ml/min, range: 18–151, for baseline and 6 months after revascularization, \(p < 0.05 \). Other studies have similarly demonstrated that serum creatinine values can be used to predict improvement in renal function following PTRA [124, 125]. Furthermore, ARAS patients undergoing PTRA with creatinine values >300 \(\mu \text{mol/l} \) (3.9 mg/dl) have almost 5-fold higher mortality rates compared with patients with creatinine values <300 \(\mu \text{mol/l} \) (relative risk = 4.7, 95% CI = 2.0–11.0, \(p < 0.0005 \)) [126].

The encouraging evidence from PTRA studies involved small numbers of patients and had several design limitations. Large-scale randomized trials will determine whether or not revascularization is indeed superior to medical treatment [127, 128]. The results of these trials are expected to provide more reliable evidence regarding the optimal treatment options.

ARAS and chronic kidney disease are common partners, but this may be because they share common etiologies (i.e. atherosclerosis) and not directly due to renal artery stenosis. Therefore, it is difficult to attribute a rise in plasma creatinine levels to an exact pathogenetic mechanism. Nevertheless, creatinine is a promising emerging vascular risk factor that can be used to successfully predict not only progressive ARAS but also improvement of renal function following PTRA.

Potential for Modifying Emerging Risk Factors

Fibrinogen

The effect of drugs on plasma fibrinogen levels has been reviewed elsewhere [37]. Briefly, fibrates can lower fibrinogen levels. However, these drugs are also associated with an elevation of plasma creatinine levels. Therefore, their use may be limited in patients with ARAS. The effect of statins on plasma fibrinogen levels is not consistent. Different antihypertensive agents may also have a variable effect on fibrinogen levels [37, 129]. One problem with assessing the role of fibrinogen in ARAS, or for that matter in any atherosclerotic disease, is that there is no drug that will selectively alter the circulating levels of this coagulation factor. All the drugs mentioned above simultaneously influence other risk factors [37].

C-Reactive Protein

Serum CRP levels are reduced by both fibrates and statins [130, 131]. There is a link between the extent of reduction in CRP levels by statins and outcome in clinically relevant events in patients with CHD [132, 133]. Several drugs, other than statins and fibrates, can lower plasma CRP levels in patients with vascular disease [134]. Whether a similar association exists between reduction of CRP levels and ARAS progression needs to be determined. In any case, the value of lowering plasma CRP levels in terms of reducing the risk of vascular events remains unconfirmed.

Lipoprotein(a)

Hormone replacement therapy can lower the serum Lp(a) levels in postmenopausal women [135]. Beyond that option, Lp(a) levels cannot be easily reduced [136]. However, there is some evidence that the harmful effect of Lp(a) can be ‘neutralized’, at least in part, by aggressive LDL cholesterol lowering treatment [136]. To our knowledge, there is no clearly defined evidence showing that lowering the Lp(a) levels results in reduction of vascular events or risk of ARAS progression.

Homocysteine

Plasma homocysteine levels can be lowered by vitamin supplementation \((B_12, B_6 \text{ and/or folic acid})\) [137]. However, the results of intervention trials are not encouraging in terms of reductions of vascular events [137].

Creatinine

Statins may exert a nephroprotective effect in patients with CHD resulting in an improved estimated glomerular filtration rate or a decreased deterioration in estimated glomerular filtration rate over time [101, 138]. Other drugs have also been reported to ‘preserve’ renal function [139]. However, it is likely that creatinine is only a marker of risk rather than directly involved in the pathogenesis of ARAS. Thus, lowering plasma creatinine levels may reflect beneficial actions in other processes (e.g. endothelial function or renal blood flow) [103]. It follows that the role of these agents in ARAS needs to be investigated.

Conclusions

ARAS is probably underdiagnosed despite a substantial prevalence in patients with vascular disease [1–3, 127, 140]. ARAS is commonly found by chance during angiography for other reasons [141].

The value of emerging risk factors in predicting ARAS is not yet fully determined. Creatinine and CRP seem to be the most promising predictors, whereas the evidence regarding homocysteine, Lp(a) and fibrinogen is still in-
adequate. Establishment of a definite role for these risk factors could result in better treatment with potential re-
gression or arrest/slowing down of progression of steno-
sis in patients with ARAS. As a result of such a beneficial
effect, prognosis may improve, and so will other vascular
risk factors (such as blood pressure and possibly dyslip-
idiemia associated with impaired renal function).

Furthermore, ARAS is often accompanied by vascular
disease in at least 1 additional arterial bed, namely PAD
[142–146], abdominal aortic disease [146–149], carotid
artery disease [145, 150–152] and/or CHD [2, 114, 116,
152, 153]. This was recently verified in a cohort of patients
with CHD. The frequency of ARAS increased in propor-
tion with the number of stenotic coronary arteries [2]; the
incidence of ARAS was 10, 15.8 and 18.1% in patients
with single-vessel, 2-vessel and 3-vessel CHD, respective-
ly [2]. It derives that treatment of vascular risk factors
would result in better management of the widespread
atherosclerotic disease in this high-risk population.

References

1. Hansen KJ, Edwards MS, Craven TE, Cherr
GS, Jackson SA, Appel RG, Burke GL, Dean
RH: Prevalence of renovascular disease in
the elderly: a population-based study. J Vasc

2. Dzielinska Z, Januszewicz A, Demkow M,
Makowiecka-Ciesla M, Prejbiś A, Narusze-
wicz M, Nowicka G, Kadijevich Z, Zienkiewicz T,
Florczak E, Janas J, Januszewicz M, Ryzyllo
W: Cardiovascular risk factors in hyperten-
sive patients with coronary artery disease
and coexisting renal artery stenosis. J Hyper-

3. Cohen MG, Pascua JA, Garcia-Ben M, Rojas-
Matas CA, Gabay JM, Berrocal DH, Tan WA,
Stouffer GA, Montoya M, Fernandez AD,
Halac ME, Grinfeld LR: A simple prediction
rule for significant renal artery stenosis in
patients undergoing cardiac catheterization.

4. Mui KW, Sleeswijk M, van den Hout H, van
Baal J, Navis G, Woffitt AJ: Incidental renal
artery stenosis is an independent predictor
of mortality in patients with peripheral vas-
cular disease. J Am Soc Nephrol 2006;17:
2069–2074.

6. Rimmer JM, Gennari FJ: Atherosclerotic re-
novascular disease and progressive renal

7. Caps MT, Zierler RE, Polissar NL, Bergelin
RO, Beach K, Cantwell-Gab K, Casadei A,
Davidson RC, Strandness DE Jr: Risk of at-
rophy in kidneys with atherosclerotic renal

8. Jacobson HR: Ischemic renal disease: an
overlooked clinical entity? Kidney Int 1988;
34:729–743.

9. Working Group on Renovascular Hyperten-
sion: Detection, evaluation, and treatment of
renovascular hypertension: final report. Arch

10. Preston RA, Epstein M: Ischemic renal fail-
ure: an emerging cause of chronic renal fail-
ure and end-stage renal disease. J Hypertens

11. Van Ampting JM, Penne EL, Beek FF,
Koornman HA, Boer WH, Beulter JJ: Preva-
ence of atherosclerotic renal artery stenosis in

12. Erley CM, Bader BD, Berger ED, Tuncel N,
Winkler S, Tepe G, Risler T, Duda S: Gado-
linium-based contrast media compared with
iodinated media for digital subtraction angi-
ography in azotemic patients. Nephrol Dial

13. McLaughlin K, Jardine AG, Moss JG: ABC of
arterial and venous disease: renal artery ste-

14. Hoffmann U, Edwards JM, Carter S, Gold-
man ML, Harley JD, Zaccardi MJ, Strand-
ness DE Jr: Role of duplex scanning for the
detection of atherosclerotic renal artery dis-

15. Kohler TR, Zierler RE, Martin RL, Nicholls
SC, Bergelin RO, Kamzars M, Beach KW,
Strandness DE Jr: Noninvasive diagnosis of
renal artery stenosis by ultrasonic duplex

16. Taylor DC, Kettler MD, Moneta GL, Kohler
TR, Kamzars M, Beach KW, Strandness DE Jr:
Duplex ultrasound scanning in the diagno-
sis of renal artery stenosis: a prospective

17. Olin JW, Piedmonte MR, Young JR, De Anna
S, Grubb M, Childs MB: The utility of duplex
ultrasound scanning of the renal arteries for
diagnosing significant renal artery stenosis.

18. Hansen KJ, Tribble RW, Reavis SW, Can-
zanello VJ, Craven TE, Poonk GW Jr, Dean
RH: Renal duplex sonography: evaluation of

19. Lea JP, Nicholas SB: Diabetes mellitus and
hypertension: key risk factors for kidney dis-

20. Ferguson R, Morrissey E: Risk factors for
end-stage renal disease among minorities.

WF, Shen ZJ, Lu C, Chu M: Prevalence and
predictors of renal artery stenosis in Chinese
patients with coronary artery disease. Intern

22. Caps MT, Perissinotto C, Zierler RE, Polissar
NL, Bergelin RO, Tullis MJ, Cantwell-Gab K,
Davidson RC, Strandness DE Jr: Prospective
study of atherosclerotic disease progression in
the renal artery. Circulation 1998;98:
2866–2872.

23. Manttrari M, Tiula E, Aliskoski T, Manninen
V: Effects of hypertension and dyslipidemia
on the decline in renal function. Hyperten-

24. Pugh JA, Medina RA, Cornell JC, Basu S:
NIDDM is the major cause of diabetic end-
stage renal disease: more evidence from a tri-
ethic community. Diabetes 1995;44:1375–
1380.

25. Crook ED, Thallapureddy A, Migdal S, Flack
JM, Greene EL, Salahudeen A, Tucker JK,
Taylor HA Jr: Lipid abnormalities and renal
disease: is dyslipidemia a predictor of pro-

26. Keane WF, Kasiske BL, O’Donnell MP: Hy-
perlipidemia and the progression of renal dis-

27. Henegar JR, Bigler SA, Henegar LM, Tyagi
SC, Hall JE: Functional and structural
changes in the kidney in the early stages of
1217.

28. De Jong PE, Verhave JC, Pinto-Sietsma SJ,
Hillegel HL; PREVEND study group: Obesity
and target organ damage: the kidney. Int J

29. Stengel B, Tarver-Carr ME, Powe NR, Eber-
hardt MS, Brancati FL: Lifestyle factors, obe-
sity and the risk of chronic kidney disease.
Epidemiology 2003;14:479–487.

72 Verhave JC, Hillege HL, Burgerhof JG, Gann A, Reis KA, Onal B, Gonen S, Arinsoy T, Erten ML, Tacconelli S, Palatresi S, Bencini C, Del

75 Cheshire NJ, Wolfe HJ, Barradas MA, Chandler AW, Mikhailidis DP: Smoking and plasma fibrinogen, lipoprotein (a) and serotonin are markers for postoperative infragenual graft stenosis. Eur J Vasc Endovasc Surg 1996;11:479–486.

Paraskevas/hamilton/cross/mikhailidis
Atherosclerotic Renal Artery Stenosis

