Treatment Options in Alzheimer’s Disease: Maximizing Benefit, Managing Expectations

Martin R. Farlowa Michael L. Millerb Vojislav Pejovicb

aIndiana University School of Medicine, Indianapolis, Ind., and bPrescott Medical Communications Group, Chicago, Ill., USA

Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting approximately 4.5 million people in the United States alone [1]. As the incidence of AD in the United States and Europe is expected to double by the year 2050 [2, 3], developing successful treatments to this complex disease is becoming an ever-increasing priority.

Approved treatments for AD – the cholinesterase inhibitors (ChEIs) and the N-methyl-D-aspartate (NMDA) receptor antagonist memantine – offer some symptomatic relief by targeting the cholinergic and glutamatergic neurotransmitter systems, respectively [4–9]. Other therapies, such as statins, vitamin E, \textit{Ginkgo biloba} extracts, selegiline, \textit{Ginkgo biloba} extracts, estrogen, and statins, as well as behavioral and lifestyle changes, have been explored as therapeutic options. Until a therapy is developed that can prevent or reverse the disease, the optimal goal for effective AD management is to develop a treatment regimen that will yield maximum benefits for individual patients across multiple domains, including cognition, daily functioning, and behavior, and to provide realistic expectations for patients and caregivers throughout the course of the disease. This review provides a basic overview of approved AD therapies, discusses some pharmacologic and nonpharmacologic treatment strategies that are currently being investigated, and offers suggestions for optimizing treatment to fit the needs of individual patients.

Key Words
Alzheimer’s disease · Cholinesterase inhibitors · Memantine · Pharmacotherapy · Combination therapy · Antioxidants · \textit{Ginkgo biloba}

Abstract

Alzheimer’s disease (AD) is becoming an increasingly heavy burden on the society of developed countries, and physicians now face the challenge of providing efficient treatment regimens to an ever-higher number of individuals affected by the disease. Currently approved anti-AD therapies – the cholinesterase inhibitors and the N-methyl-D-aspartate receptor antagonist memantine – offer modest symptomatic relief, which can be enhanced using combination therapy with both classes of drugs. Additionally, alternative therapies such as nonsteroidal anti-inflammatory drugs, vitamin E, selegiline, \textit{Ginkgo biloba} extracts, estrogen, and statins, as well as behavioral and lifestyle changes, have been explored as therapeutic options. Until a therapy is developed that can prevent or reverse the disease, the optimal goal for effective AD management is to develop a treatment regimen that will yield maximum benefits for individual patients across multiple domains, including cognition, daily functioning, and behavior, and to provide realistic expectations for patients and caregivers throughout the course of the disease. This review provides a basic overview of approved AD therapies, discusses some pharmacologic and nonpharmacologic treatment strategies that are currently being investigated, and offers suggestions for optimizing treatment to fit the needs of individual patients.

Copyright © 2008 S. Karger AG, Basel

Dr. Martin Farlow receives grants from Eli Lilly & Co., Novartis, Ono/Pharmanet, Pfizer, Elan Pharm. He also is consultant for Abbott, Accera, Adamas, Cephalon Inc., Eisai Pharm, GlaxoSmithKline, Medivation, Memory Pharm., Merck Res. Labs., Neurochem, Novartis, Octapharma, Takeda, Toyama, Worldwide Clinical Trials and received honoraria from Eisai, Forest, Novartis, Pfizer as a member of Speakers’ Bureau.

Drs. Michael Miller and Vojislav Pejovic work for Prescott Medical Communications Group, a contractor of Forest Laboratories, Inc.
In this review, we discuss approved and investigational treatments for AD, methods for maximizing clinical benefits, and strategies to effectively manage patient and caregiver expectations.

ChEIs: The First Class of Agents Approved for the Treatment of AD

The first 15 years of AD pharmacotherapy were primarily focused on the widespread degeneration of acetylcholine (ACh)-containing neurons in the brains of affected patients. ChEIs were developed with the idea of inhibiting acetylcholinesterase (AChE), thereby enhancing cholinergic neurotransmission. Tacrine (Cognex/L50128, Warner-Lambert), the first ChEI approved by the US Food and Drug Administration (FDA) for the treatment of mild-to-moderate AD, is no longer prescribed due to problems with tolerability and hepatotoxicity. Three second-generation ChEIs have been approved by the FDA for mild-to-moderate AD, with one (donepezil) recently receiving approval for the treatment of severe AD. All of the ChEIs provide modest but significant improvements in cognition and global patient functioning and, in spite of having different pharmacological profiles (table 1), are considered to have similar efficacy [4–7].

Donepezil (Aricept®, Eisai; Pfizer, Inc.) has a long half-life (approximately 70 h), which allows for once-daily dosing and can be administered in the form of an orally disintegrating tablet [6, 7, 10]. Evidence suggests that donepezil, in addition to providing cognitive and global benefits, may be moderately effective at alleviating functional problems and behavioral changes such as depression, anxiety, and apathy [6, 7]. As with other ChEIs, the predominant side effects associated with donepezil are gastrointestinal (diarrhea, nausea; table 2) [10]. These symptoms are most severe during dose escalation, but may continue during maintenance therapy. Other reported side effects include anorexia, headaches, muscle cramps, fatigue, syncope, sleep disturbances, and urinary incontinence [7, 10, 11]. Donepezil is metabolized in the liver, but a portion of it (17%) is excreted unchanged in the urine [6, 10, 12]. The 5-mg dose can be given safely to patients with mild-to-moderate hepatic and renal impairment [13].

Rivastigmine (Exelon®, Novartis Pharmaceuticals) [6, 7, 14] selectively inhibits AChE in the central nervous system, and also inhibits butyrylcholinesterase [7, 15]. It has been speculated that this additional mechanism may become important in advanced AD as AChE levels decline [16, 17], but recent measurements of butyrylcholinesterase activity in the synapses of patients with AD challenge this view [18]. Rivastigmine has a very short half-life in plasma and cerebrospinal fluid (1–2 h), thus requiring twice-daily dosing [19–21]. Statistically significant benefits of rivastigmine have been observed for cognition,
global function, and activities of daily living (ADLs) [22], and the drug also may improve attention focusing [7]. Moreover, a recent study has demonstrated that treatment with rivastigmine may delay the onset of behavioral symptoms and thus reduce the risk of initiating therapy with an antipsychotic [23]. The side effect profile for rivastigmine varies with dosing; in clinical trials designed to achieve the maximum tolerated dose, up to 50% of individuals in higher-dose groups experienced cholinomimetic side effects [24]. As with other ChEIs, gastrointestinal side effects associated with rivastigmine are common (vomiting, nausea, diarrhea, anorexia, abdominal pain; table 2), but some can be circumvented using a slower dose-titration scheme, upwardly titrating monthly rather than every 2 weeks [25]. Other notable side effects include dizziness, headache, and fatigue (table 2). Rivastigmine metabolism is almost completely (97%) nonhepatic (primarily occurring through cholinesterase-mediated hydrolysis) [14], so possibilities of metabolic drug–drug interactions are minimal. In July 2007, the FDA approved a transdermal patch delivery system for rivastigmine, which demonstrated similar efficacy but better tolerability than the oral preparation in a clinical trial [26, 27].

Galantamine (Razadyne™, previously Reminyl®, Ortho-McNeil) [6, 7, 28], in addition to inhibiting AChE, allosterically binds nicotinic ACh receptors, thereby modulating the effects of ACh [29]. While binding nicotinic ACh receptors could influence neuronal processes, the clinical benefit of this mechanism has not been established. Traditional dosing is twice daily, and an extended release daily formulation is now available, allowing once daily dosing. Galantamine has been shown to provide

Table 2. Adverse events associated with the use of ChEIs and memantine in patients with AD* [10, 19, 27, 28, 32]

<table>
<thead>
<tr>
<th>Adverse events</th>
<th>Donepezil mild to moderate AD</th>
<th>Rivastigmine oral</th>
<th>Rivastigmine transdermal</th>
<th>Galantamine</th>
<th>Memantine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Accident</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Anorexia</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anxiety</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Asthenia</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Confusion</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Constipation</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Depression</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Dizziness</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>Ecchymosis</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Headache</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Infection</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Insomnia</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Malaise</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Muscle cramps</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nausea</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>Pain</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Somnolence</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Weight decrease</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

*Information taken from Prescribing Information for each drug. Adverse events reported in at least 5% of patients receiving drug and at a higher frequency than placebo-treated patients (the 10 most frequently occurring adverse events for each drug are indicated in bold). 2 Capsule: 6 mg/day; patch: 9.5 mg/day.
NMDA Receptor Antagonists: The Second Class of Agents Approved for the Treatment of AD

Memantine (Namenda®, Forest Laboratories, Inc.) [32], the first compound approved for patients in the moderate-to-severe stages of AD, is a moderate-affinity, uncompetitive antagonist of the NMDA receptors (NMDARs). Glutamatergic dysfunction can lead to an excessive influx of calcium ions through NMDARs, leading to neuronal death through mechanisms that are not clearly understood [33]. Such ‘excitotoxicity’ has been implicated in AD [34]. The pharmacological properties of memantine are believed to prevent NMDAR-mediated excitotoxicity, while permitting normal synaptic activity [35]. The half-life of memantine in plasma is approximately 70 h, which theoretically allows for once-daily dosing; however, the manufacturer, following established procedures, recommends two daily doses of 10 mg each [32].

Memantine treatment of patients with moderate-to-severe AD has been shown to confer significant benefits on cognition, ADLs, global outcomes, and behavior (particularly agitation and aggression) when administered either alone or in patients already receiving donepezil [9, 36–40]. Memantine has also been investigated in patients with mild-to-moderate AD, demonstrating significant results on cognition, behavior, and global status in one trial [41]; however, the FDA recently denied approval for this indication as other trials suggest that memantine may not be efficacious at this stage of the disease [9, 42]. Memantine is safe and well tolerated, and trial discontinuation rates due to adverse events in memantine-treated patients are comparable to those in placebo groups [32]. In contrast to the ChEIs, gastrointestinal adverse events are rare. The most commonly reported adverse events that occur more frequently with memantine than placebo include dizziness, headache, confusion, and constipation (table 2) [32]. Memantine is primarily excreted unchanged in urine (48%) [32], although in vitro evidence suggests the possibility of hepatic metabolism as well [43]. No metabolic interactions with other drugs have been observed with memantine [32] (table 1). Medications that alkalize urine may reduce the renal elimination of memantine, and dose reductions are recommended for patients with severe renal impairment [32, 44].

Other Therapeutic Options in AD

While the ChEIs and memantine have been designed to affect specific aspects of chemical neurotransmission, other therapies seek to target biochemical stressors, such as inflammation, oxidation, and the disruption of hormonal processes, all of which have been implicated in the neuronal loss observed in AD [8]. Some of the many therapies investigated for their potential to prevent the onset, delay progression, or reverse AD include anti-inflammatory drugs, antioxidants, selegiline, G. biloba, estrogen replacement, statins, and compounds designed to inhibit amyloid and tau neuropathology. Currently, efficacy data for each of these are either largely negative or inconclusive (most studies of compounds designed to inhibit amyloid or tau neuropathology are preliminary or still in progress).

It has been hypothesized that inflammation, likely caused (at least in part) by amyloid plaques, contributes to neuronal damage and eventual loss of synaptic function [45, 46]. Epidemiological studies have demonstrated a lower incidence of AD in patients regularly using non-steroidal anti-inflammatory drugs (NSAIDs), suggesting that NSAID use may be protective against AD [47]. However, prospective trials evaluating NSAID use did not reveal a symptomatic benefit in patients with AD [48, 49] or mild cognitive impairment (MCI) [50, 51], and a trial investigating a potential preventative role for naproxen and celecoxib was halted due to concerns over cardiovascular risks [52].

Another alternative approach involves protection against cellular damage caused by oxidative stressors. As markers of oxidative injury are evident in postmortem brain tissue of patients with AD [53, 54], it has been suggested that oxidative processes are involved in the disease pathogenesis. Antioxidants that have been investigated for their potential to reduce the risk of AD include vitamins A, C, and E, coenzyme Q, and selenium [8, 55, 56]. Clinical
trials with vitamin E have produced the most consistent results, suggesting that it may be the most promising antioxidant for delaying the onset or slowing the progression of AD [57, 58]. As a result of these findings, AD treatment guidelines issued by the American Academy of Neurology in 2001 advised considering vitamin E as an adjunctive treatment [24]. However, in a more recently published large, double-blind, placebo-controlled trial in patients with MCI, no advantage for vitamin E over placebo regarding rate of cognitive decline or disease progression was seen during the 3-year course of the study [59]. Since recent evidence also suggests that high doses of vitamin E (≥400 IU/day) may be associated with higher all-cause mortality rates [60], a more comprehensive clinical evaluation is required before the risk-benefits ratio of vitamin E supplementation in AD can be determined.

A small number of clinical trials have also indicated that selegiline, a monoamine oxidase B inhibitor with antioxidant properties used for treating patients with Parkinson’s disease [61], may be useful for the treatment of AD. In a long-term clinical trial, selegiline-treated patients demonstrated significant improvement on the Clock Draw Test and on the Mini-Mental Status Examination (MMSE) [62]. Clinical trial results have also indicated that treatment of AD with either selegiline, vitamin E or both may slow the progression of the disease [58]; however, a recent Cochrane meta-analysis of 17 trials of selegiline for AD found very few significant treatment effects and recommended that no further studies need to be conducted [63].

G. biloba extract, a popular herbal medication, is widely used for its potential cognitive and neuroprotective effects [64]. It has also been associated with antioxidant properties and inhibition of platelet-activating factor [65]. While ginkgo has been promoted as a memory enhancer for a number of years, its efficacy in patients with AD has not been validated by consistent data [66]. Several clinical studies have revealed a potential benefit of ginkgo for treatment of patients with AD [66–68]; however, a recent randomized, double-blind, placebo-controlled trial involving 513 patients did not demonstrate significant efficacy over placebo [69]. An ongoing prevention trial aimed at evaluating the potential effect of ginkgo on delaying progression to AD may reveal its utility in prodromal stages of dementia (ClinicalTrials.gov Identifier: NCT00010803; scheduled completion date: July 2009). G. biloba extract is generally well-tolerated; previous concerns regarding risk of hemorrhage due to inhibition of platelet-activating factor [70] have proven to be unfounded [69].

Observational studies have revealed a lower incidence of AD in postmenopausal women taking estrogen, suggesting that estrogen may have a protective role in AD [71]. However, recent studies indicate that the combination of estrogen and progestin, or estrogen alone, may in fact increase the risk for dementia and adversely affect cognition [72, 73]. Estrogen supplementation has also been linked to an increased risk of stroke, cancer, and other health problems [71, 74, 75]. Consequently, the Women’s Health Initiative concluded in 2003 that the risks accompanying estrogen-progestin replacement therapy outweigh the potential benefits [72]. However, it should be noted that data from a smaller subsequent trial suggest that the timing of HRT in respect to the onset of menopause may be critical: early HRT initiation was associated with cognitive benefits compared to later initiation, whereas later initiation was associated with cognitive decline on the MMSE compared to participants who did not use HRT [76]. While debate continues over other potential benefits of hormone replacement therapy, it is not currently recommended specifically for the prevention or treatment of AD.

Epidemiological evidence has also revealed a decreased incidence of AD in patients taking the cholesterol-lowering drugs known as statins [77], thereby prompting investigation of their utility as an AD therapy [78]. A small prospective, double-blind, placebo-controlled trial of simvastatin in AD demonstrated a reduced level of β-amyloid in the cerebrospinal fluid of patients with mild, but not moderate AD [79]. A similar trial found that patients with AD treated with atorvastatin performed significantly better than placebo-treated patients on a measure of cognition at 6 months (but not 12 months) [80]. Despite these results, it is not recommended that statins be used specifically for AD treatment. It has been suggested that patients with AD may be overly susceptible to adverse effects of statins due to pre-existing alterations in signal transduction and energy metabolism [81], although this has not been clinically verified. Future studies are expected to clarify the role of cholesterol and cholesterol-processing pathways on AD progression and to ascertain whether the putative effects of statins in AD are related to their lipid-lowering properties. Regardless of age or risk of dementia, all individuals are advised to maintain cholesterol within recommended levels.

Many studies are underway to investigate biochemical and immunological methods for blocking one or more of the steps involved in amyloid and neurofibrillary pathology. Such therapeutic approaches may ultimately lead to additional ways of deterring, preventing, or altering the
progression of AD; however, they will be required to undergo rigorous preclinical and clinical evaluation before being approved by the FDA. Most of those approaches are in relatively early stages of development, and it is unlikely that they will be available for at least a few more years.

Nonpharmacological Approaches

In addition to pharmacological approaches to AD, a number of nonpharmacological methods have also been investigated. Although many of these studies have been poorly controlled and not subjected to the same rigorous criteria as trials of pharmaceutical agents [82], recent evidence suggests that there may be a role for various types of cognitive training and psychological intervention in the treatment of AD. A meta-analysis [83] showed that various cognitive therapy methods may improve or slow the rate of decline of cognitive and functional abilities in patients with AD, and that restorative strategies, which are designed to restore functioning through repeated cognitive challenges, are typically more effective than compensatory strategies designed to ‘work around’ cognitive deficits [83]. A Cochrane meta-analysis of trials using reality orientation, in which patients are regularly presented with cues relating to their environment, also suggested potentially significant benefits for patients [84]. More recently, in a trial involving untreated patients with AD, participants undergoing regular, intensive reality orientation and cognitive stimulation demonstrated better cognitive performance than the patients in the control group [85]. Such gains may be maintained for several months after the cessation of the treatment, although data on the persistence of such benefits are sparse [83]. Furthermore, psychosocial interventions such as caregiver support, counseling, education, and environmental modifications that minimize stressful situations for patients with AD have also been shown to minimize both patient behavioral problems [86] and caregiver distress (see below) [87]. As a caveat, it should be noted that it is often difficult to ascertain whether the benefits of cognitive therapy in AD are due to the methods themselves or the general stimulation of patients through regular interpersonal interactions with caregivers, family members, and health care professionals [83].

Maximizing Benefit

Ultimately, the hope for a truly revolutionary AD therapy lies in the potential of some pipeline compound to prevent or delay the onset of the disease. Until this possibility is realized, it is important that practicing physicians optimize available symptomatic therapies in order to provide the best possible treatment regimen. Clinical issues that may influence the effectiveness of therapy include early and efficient diagnosis, behavioral or lifestyle modifications, patient compliance, and sequential or combinatorial therapeutic approaches with available drugs.

Early and Efficient Diagnosis

Pathological changes and neuronal degeneration in AD begin many years before a clinical diagnosis can be made [88–91]. Since such changes are likely cumulative, diagnosis and intervention at an early, preclinical stage of the disease can be of paramount importance in preserving cognitive function [92].

The first signs of cognitive complaints can indicate a syndrome called mild cognitive impairment (MCI) [93, 94], which is defined as ‘a cognitive decline greater than that expected for an individual’s age and education level but that does not interfere notably with activities of daily life’ [95]. The significance of MCI is well illustrated by an observation that 80-year-old patients with MCI can be expected to progress to AD at a rate of 12% per year, compared to 2% per year for control, age-matched subjects [96]. A 2003 conference dedicated to MCI resulted in a diagnostic algorithm that can be used to identify four MCI subtypes [93, 94], one of which, the single-domain amnestic MCI (also referred to as ‘amnestic MCI’ or ‘aMCI’), is particularly associated with a high probability of conversion to AD: one study found a conversion rate to AD of approximately 49% (over 2.5 years) for patients with amnestic MCI, compared to approximately 27% for patients with nonamnestic forms [97]. The identification of factors that best predict the conversion from MCI to AD is an area of intense research [97–101].

Current expert opinion recommends careful monitoring of patients who show symptoms of amnestic MCI, since they may have reached a prodromal stage of AD [95, 102, 103]. Although standard diagnostic tools for dementia, such as the MMSE, may not be sensitive enough to detect memory problems indicative of MCI [95], efforts are being made to develop more effective diagnostic tools [104]. In addition, corroboration and characterization of patient memory complaints from family members or other caregivers can help identify individuals at the highest risk of progressing from MCI to AD [105–108]. Finally, emerging brain imaging techniques hold the promise of an early, accurate, and sensitive detection of the underlying AD pathology [109–112], although at this point the
cost-effectiveness of these tools is still a matter of contention [113–115].

For individuals whose changes in cognitive, functional, or behavioral performance indicate progression toward AD, there are numerous standard and validated evaluation tools for measuring the degree of impairment and monitoring progression of the disease. The MMSE and the Clock Drawing Test are most commonly used in a clinical setting; however, a recent study comparing 13 screening instruments with an administration time of 10 min or less suggests that the Mini-Cog, the Memory Impairment Screen, and the General Practitioner Assessment of Cognition show potential for widespread clinical use due to ease of administration and interpretation, patient-friendliness, sensitivity, specificity, and freedom from factors such as age, education, and language [116]. A recently developed questionnaire called the St. Louis University Mental Status Examination, similar to the MMSE but possibly more sensitive to MCI [117], also shows promise for diagnostic purposes, although additional validation is required. With the standardization of basic clinical evaluation tools, practitioners should be able to evaluate patients more easily, potentially enabling earlier diagnosis, staging, and treatment initiation. To emphasize the importance of early and accurate diagnosis of dementia, an international working group has recently proposed new diagnostic criteria for AD that include neuroimaging, biomarkers, and genetic evidence [118].

Patient and Caregiver Lifestyle

Lifestyle and environmental factors such as diet, education, and occupational complexity have all been investigated for correlations to AD [119]. For example, a retrospective analysis of approximately 10,000 participants of a healthcare system in California showed that an increased adiposity (defined as the body mass index of at least 25) in midlife (40–45 years of age) is associated with a significantly greater risk of developing AD or vascular dementia, in a manner independent of comorbidities [120, 121]. According to a Swedish study of twins, low education represents a risk factor for dementia independent of genetic influences [122]. Both of these findings are mirrored by another Scandinavian study, which showed that future dementia could be significantly predicted by high age, low education, hypertension, hypercholesterolemia, and obesity [123]. In addition, epidemiological studies suggest that the regular consumption of food rich in antioxidants or ω-unsaturated fatty acids, such as red wine [124, 125], fruit and vegetable juices [126], green tea [127], coffee [128, 129], curry [130, 131], and fish [132–134] is associated with a lower risk of AD.

Activities involving complex cognitive functioning, such as reading, participating in board games, or playing musical instruments, may also help protect against the development of dementia [135]. In addition, regular physical activity has been associated with the maintenance of healthy brain function, increased neuronal survival, protection against neuronal injury, and a reduced risk of dementia in cognitively normal elderly persons [136–139]. Physical activity has been also associated with improved cognitive function in older adults with cognitive impairment and dementia, suggesting that exercise may continue to provide benefits even after diagnosis [140]. A recent review of lifestyle activities suggests that social networking, in addition to mental and physical activity, is also important to maintaining cognitive health [141]. Therefore, patients should be encouraged to maintain or initiate healthy lifestyles, including a balanced diet, increased mental and physical activities, and regular social contact with peers and family members.

Finally, since patients with AD become increasingly dependent on caregiver support as the disease progresses, a caregiver’s own well-being constitutes an important goal of disease management. In a recent study of 406 caregivers over 18 years, nursing home placement of patients with AD was delayed by an average of 557 days in families that received enhanced caregiver support [142]. Several studies have shown that many types of intervention (cognitive-behavioral therapy, counseling, daycare, training of care recipient, and multicomponent interventions) can be beneficial for people who care for patients with AD [142–147]. Caregiver psychotherapy (counseling) and psychoeducational techniques such as caregiver stress and anger management, depression management, and programs designed to help the caregiver recognize and minimize stressful situations for patients, have proven particularly effective [86, 87]. Caregivers should be directed to educational and support resources, such as the Alzheimer’s Association website (http://www.alz.org), which contains a large amount of information about local resources, caregiver support, and patient care. The issue of caregiver burden has been largely overlooked until recently, and deserves the increased attention of healthcare policy makers and physicians alike [148].

Optimizing Pharmacotherapy: Monotherapy

Patients with AD often discontinue treatment due to side effects, a lack of initial efficacy, or the loss (or perceived loss) of efficacy during treatment [149]. Approxi-
mately 51% of patients newly treated with an AD medica-
tion discontinue therapy within 4 months of treatment
initiation [150], suggesting that many patients are not re-
ceiving optimal benefits from pharmacotherapy. The side
effects associated with the use of ChEIs, which are pri-
arily gastrointestinal (table 2), continue to provide a
significant challenge to patient adherence. Some of these
adverse effects can be minimized through a slower dos-
ing scheme (titrating as slowly as every 4–6 weeks) during
the initial and escalation phases of treatment, or by ad-
ministering the medication with food to retard the rapid
stimulation of the cholinergic system [25] (except in the
case of donepezil and transdermally delivered rivastig-
mine, for which the rate of absorption is not affected by
food [10, 151]). Since side effects associated with meman-
tine use are less severe and less frequent, tolerability prob-
lems are not a common reason for discontinuance with
this medication [4, 9].

As each ChEI has a distinct pharmacokinetic and
pharmacodynamic profile, switching patients from one
ChEI to another is a viable option in patients who have
problems with long-term efficacy or tolerability of their
initial medication [149, 152]. In several studies, approxi-
mately 50% of patients who previously failed to respond
to a ChEI demonstrated stabilization or improvement af-
after switching to a different ChEI; in addition, a patient’s
response to one ChEI was not predictive of response to
another [5, 149, 152]. In many cases, patients who switch
medications are also less likely to experience cholinergic
side effects [149]. The optimal procedure for switching
remains to be determined, although some studies and
guidelines suggest that the second drug may be adminis-
tered as early as one day after the first has been discon-
tinued [149]. In cases of poor tolerability with the initial-
ly prescribed medication, however, a washout period is
recommended until side effects resolve [149]. One guide-
line suggests cessation of therapy for five half-lives (done-
pezil, 15 days; rivastigmine/galantamine, 2 days) before
switching [6], although in most cases 1 week is sufficient
[153]. Dose adjustments to the initial treatment should
always be considered before switching medications, and
a minimum treatment period of 6 months, with realistic
treatment expectations (see below), is recommended in
cases where a lack of efficacy is perceived [149].

Traditionally, patients with early-stage (mild-to-mod-
erate) AD are prescribed ChEIs, while memantine is in-
dicated for patients in moderate-to-severe stages of the
disease. These lines are beginning to blur, however. The
recent approval of donepezil for severe AD [154] will like-
ly lead to increased ChEI use in late-stage AD, and cur-
rent practice suggests that patients should not discontinue
ChEI therapy even after they progress to a more severe
stage [155]. Additional studies involving patients with
mild-to-moderate AD may also help clarify whether me-
mantine can be effective in treating patients (or a subset
of patients) in earlier stages of the disease [9, 41, 42].

Despite the apparent advantages of beginning therapy
as early in the disease process as possible, the ability of
either the ChEIs or memantine to delay (or modify) dis-
ease progression, as opposed to merely providing symp-
otmatic relief, remains unproven. The clinical efficacy of
ChEIs in MCI is also being tested, but neither symptom-
tic nor disease-modifying effects have been established
for the use of these drugs at such an early stage [30, 59,
156, 157]. Preclinical studies with memantine are consis-
tent with a putative neuroprotective role [158], but this
has yet to be demonstrated in patients. Until more data
are available, practicing physicians must use their best
judgment in determining the point at which pharmacother-
apy is instituted, based on an individual patient’s
risks and needs.

Optimizing Pharmacotherapy: Combination Therapy
Combination therapy is commonly used in treating
many other diseases, including cancer and HIV. Due to
the complex nature of AD and the distinct mechanisms of
action of the ChEIs, memantine, and alternative treat-
ments, combination therapy may also be effective in AD.

Co-Administration of ChEIs and Memantine
A randomized, double-blind clinical trial of meman-
tine was performed in 404 patients with moderate-to-se-
vere AD who were already receiving stable doses of done-
pezil [39]. Participants who received both donepezil and
memantine showed significantly better performance
over those who received donepezil plus placebo in all do-
main assessed, which included measures of cognition,
function (ADLs), behavior, psychiatric disturbance, and
global condition. While most adverse events in both
treatment groups were mild or moderate and judged to
be unrelated to either study drug, the addition of meman-
tine was associated with a lower incidence of several cho-
linergic adverse events in this study. Participants who re-
ceived both drugs had a lower frequency of diarrhea, fecal
incontinence, and discontinuance due to adverse events
than those on donepezil alone, although the statistical
significance of these differences was not addressed in this
study [39].

Pilot combination studies have also been performed
using memantine and the other ChEIs. A European post-
marketing surveillance study demonstrated that memantine is well-tolerated in combination with donepezil, rivastigmine, and tacrine [159]. Co-therapy of memantine with galantamine in a 6-month prospective cross-sectional study was well-tolerated and resulted in no cognitive or functional deterioration during the course of treatment, according to caregiver reports [160]. Another recent pilot study investigating the efficacy and tolerability of memantine in patients with mild-to-moderate AD receiving stable rivastigmine treatment concluded that the addition of memantine resulted in additional cognitive benefits and was safe and well-tolerated [161]. A growing body of evidence suggests that adding memantine to ChEI therapy may produce additional cognitive, functional, and global benefits, accompanied by a negligible increase in risk of adverse effects. The possibility that memantine may also have an effect on improving the tolerability of ChEI treatment [39] merits further investigation in prospective trials. It should again be noted, however, that memantine is currently approved for patients with moderate to severe AD, while rivastigmine and galantamine are currently approved for patients with mild to moderate AD.

Co-Administration of Antidementia Therapy and Antipsychotics

While co-administration of ChEIs or memantine with antipsychotics and antidepressants is a standard practice for patients with behavioral disturbances in advanced stages of AD [24], the treatment of behavioral symptoms with atypical antipsychotics is considered off-label in geriatric patients, as these drugs are associated with an increased risk of death, falls and cerebrovascular adverse events in the elderly [162–164]. In such patients, nonpharmacologic interventions should be exhausted prior to prescribing drugs for these symptoms [for a review of many nonpharmacologic options, see 165]. Evidence also suggests that both memantine and the ChEIs may reduce or prevent the emergence of behavioral symptoms in AD patients [37, 166, 167], which may allow patients to either avert or reduce the usage of antipsychotic medications. It has been suggested that AD patients are particularly vulnerable to antipsychotic-induced cerebral neurotoxicity, so diminished antipsychotic use may be of particular relevance in this patient population [168].

Co-Administration of Traditional and Nontraditional Therapies

As studies regarding the efficacy of agents such as vitamin E and G. biloba have not yet produced consistent results in clinical trials, it would be premature to recommend combining them with standard ChEI or memantine therapy. Although these and other agents may eventually be deemed effective and safe for patients with AD, additional prospective trials will be required to determine their exact role in pharmacotherapy. However, there is an increasing body of evidence that nonpharmacologic methods may ultimately become a useful supplement to current pharmacologic treatment. For example, a randomized, controlled, multicenter trial of reality orientation therapy in patients taking donepezil demonstrated significant improvements for patients receiving both treatments over those receiving donepezil alone [169]. As cognitive and behavioral methods pose little risk to patients and caregivers, and may provide benefits, caregivers should be encouraged to pursue these alternative strategies if desired. However, more rigorously controlled long-term studies will be required to determine which of these techniques, if any, can provide consistent benefits, and whether they should become a routine part of standard therapy.

Managing Expectations

 Unrealistic expectations of patients and caregivers can negatively impact treatment compliance. When patients inevitably continue to decline despite therapeutic intervention, frustration is understandable; however, studies suggest that the benefits of therapy can be rapidly lost if treatment is discontinued [170], and in most cases even modest therapeutic effects provide justification for therapy maintenance [155]. Open-label extension trials have suggested continued benefits for up to 1 year with memantine [171] and for at least 3 years with each of the ChEIs [172–174]. Patients and caregivers should be aware that current pharmacotherapy responses are less than ideal, and expectations should center on slowing decline or delaying institutionalization rather than overall patient improvement. While current treatments for AD may lessen the symptomatic decline of the disease and provide an extension of independence in some cases, they cannot be considered disease-modifying or curative. Physicians must exercise caution when discussing treatments with patients and their caregivers, impressing upon them that the benefits of current pharmacologic treatments are rarely seen as an improvement in symptoms, but rather as an extension of patient independence. If patients and caregivers understand that a significant goal of treatment is to delay the onset of more severe
symptoms or long-term care placement, treatment compliance may improve. Providing regular reassessment every 6 months is also crucial for tracking both the progression of the disease and the status of the caregiver [175]. Physicians should also assist patients and caregivers in recognizing that nontraditional treatments, such as ginkgo, vitamin E, and selegiline, are not yet clinically validated as efficacious treatments. While some clinical evidence supports their use, many of the double-blind placebo-controlled trials to date have been negative. Continuing the prescribed treatment – along with a healthy diet, exercise (if possible), and regular contact with the physician – is the most realistic manner in which patients can control the symptoms of their illness.

Conclusions

The availability of approved pharmacotherapies (second-generation ChEIs and memantine) and the emergence of numerous alternative therapies have armed physicians with more treatment options for AD compared to just over a decade ago, when tacrine was the only available therapeutic option. Although prospective trials examining the role of agents such as NSAIDs, selegiline or estrogen-progestin combination in the prevention or treatment of AD have been largely negative, potential new therapeutics for AD, including statins and agents that combat amyloid deposition and tau hyperphosphorylation, may one day be shown to provide protection against neurodegeneration. However, until new preventive or disease-altering medications are approved, physicians must optimize the use of available pharmaceutical and behavioral therapies. ChEIs are still the traditional first line of pharmacotherapy for mild-to-moderate AD, while memantine and donepezil are both indicated for moderate-to-severe AD. In instances where patients do not respond or have tolerability issues with a particular ChEI, changes in dose titration or switching of ChEIs can be attempted. Combinations involving memantine and ChEIs may produce additional benefits to patients without significantly increasing the risk of side effects, and future clinical trials may identify other agents that show efficacy for AD symptoms when used alone or as a part of combination therapy. In principle, therapeutic intervention should occur early in the disease, in order to slow or prevent symptom progression for as long as possible.

Patients and caregivers must maintain reasonable expectations regarding pharmacotherapy, and resources such as support groups and social networking can provide relief for both patients and caregivers. Cognitive and behavioral therapies may also play a role in improving patient cognition and function, diminishing caregiver stress, and delaying nursing home placement. As more is learned about the combinatorial effects of these and other potential therapeutic options at all stages of AD, the ability to significantly impact disease progression may one day be realized.

Acknowledgments

The authors wish to thank Ms. Annalise Nawrocki and Dr. Kristen A. Andersen of Prescott Medical Communications Group for their assistance in the preparation and review of the manuscript.

Dr. Martin Farlow receives support from the NIH grant P30 AG10133.

References

AD Treatment Options

AD Treatment Options

